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We theoretically analyze Ramsey interference experiments in one-dimensional quasicondensates and

obtain explicit expressions for the time evolution of full distribution functions of fringe contrast. We show

that distribution functions contain unique signatures of the many-body mechanism of decoherence. We

argue that Ramsey interference experiments provide a powerful tool for analyzing strongly correlated

nature of 1D interacting systems.
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Introduction.—Recent progress in the field of ultracold
atoms not only expanded our understanding of equilibrium
properties of interacting 1D Bose gases [1,2] but also posed
new theoretical challenges by studying far-from-
equilbrium dynamics of such systems. Recent experiments
addressed such questions as thermalization and integra-
bility [3], decoherence after the splitting of two conden-
sates [4] and spin dynamics of two-component Bose
mixtures [5]. Motivation for such experiments comes not
only from the basic interests in many-body dynamics [6]
but also from possible applications of ultracold atoms such
as quantum information processing [7] and interferometric
sensing [8]. In this paper, we theoretically analyze the
decoherence dynamics of Ramsey interference fringes in
one-dimensional quasicondensates. Such systems have
been considered for possible applications in atomic clocks
and quantum-enhanced metrology [9,10]. Here we show
that a Ramsey interferometer is also a powerful tool for
studying many-body dynamics of low dimensional quan-
tum systems. We find that decoherence of Ramsey fringes
is strongly affected by the multimode character of one-
dimensional systems. Moreover we will demonstrate that
the time evolution of the full distribution function of fringe
contrast provides unique signatures of this many-body
decoherence mechanism [11]. The idea of using noise and
distribution functions to characterize equilibrium many-
body states of ultracold atoms has been discussed in several
theoretical papers [12] and applied in experiments [1,13].
This Letter constitutes the first proposal to study nonequi-
librium dynamics of ultracold atoms with quantum noise.

The role of interactions in Ramsey interferometers with
BEC was first addressed in the pioneering paper of
Kitagawa and Ueda [10]. They used the single mode
approximation to predict the interaction-induced decoher-
ence of Ramsey fringes along with the appearance of spin-
squeezed states. Their work stimulated ideas for quantum-
enhanced metrology that take advantage of spin-squeezed
states formed in interacting BECs [9,14]. For the analysis

of one-dimensional quasicondensates, however, the single
mode approximation cannot be applied because these sys-
tems do not have macroscopic occupations of a single state,
even at zero temperature. The non mean-field character of
the multimode spin dynamics in 1D quasicondensates was
first reported in experiments by Widera et al. [5]. However,
this work did not provide a definitive demonstration of the
many-body origin of Ramsey fringe decay. In the follow-
ing, we argue that unambiguous signatures of the multi-
mode decoherence are found in the full distribution
function of the Ramsey fringe amplitudes. Such distribu-
tion functions should be accessible in experiments with 1D
quasicondensates realized on atom chips [15], because
such systems do not average over multiple tubes and thus
allow the measurements of shot-to-shot fluctuations [1].
Now we describe the Ramsey sequence considered in

this Letter. Here we identify two hyperfine states as spin-up
and spin-down states. The Ramsey sequence is carried out
as follows: (i) all spins of the atoms are prepared in the spin
up state; (ii) a �=2 pulse is applied to rotate each spin into
the x direction; (iii) spins freely evolve (precess) for time t;
(iv) another�=2 pulse is applied to map the transverse spin
component to the z direction, which is then measured.

Measurements yield a net spin ~Sl for a segment of length
l and we assume that l is smaller than the system size but
large enough to contain a large number of particles Nl �
1. In such a case, the simultaneous measurements of Sxl
and Syl are possible, because even though operators Sxl
and Syl generally do not commute, the noncommutativity

gives only corrections of the order of 1=
ffiffiffiffiffiffi
Nl

p
relative

to the average values [16]. Commutativity of Sxl and Syl
implies, in particular, that we can define the joint distribu-
tion function Px;y

l for the two transverse spin components

Sxl and Syl . In experiments, measurements of Px;y
l are pos-

sible by mapping the spin orientations in x-y plane to z
direction by �=2 pulse, followed by the local measure-
ments of Sz [17]. S

x
l and S

y
l as well as the magnitude of spin
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S?l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSxl Þ2þðSyl Þ2

q
can be found by taking the integration

over l. The analytic solution for the time evolution of Px;y
l

constitutes the main result of this Letter. In addition, we
assume that l is larger than the spin healing length �s, so we
can use Tomonaga-Luttinger liquid approach to describe
the collective spin dynamics (see also below). For simplic-
ity we work in the rotating frame of the Larmor precession,
and consider the spins before the last �=2 pulse. Then the
amplitude of Ramsey fringes, as it is conventionally de-
fined, corresponds to Sxl .

Our main results are summarized in Fig. 1 and can be
understood from the following physical arguments. Strong
fluctuations present in 1D systems forbid the existence of
the long range coherence [18], and spatial fluctuations
coming from different wavelengths strongly affect the
dynamics in one dimension. Among those, fluctuations
with wavelengths longer than the integration length l rotate
~Sl as a whole. So they decrease S

x
l but not the magnitude of

the spin S?l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSxl Þ2 þ ðSyl Þ2

q
. Fluctuations with wave-

lengths shorter than l decrease both Sxl and S?l simulta-

neously. Figures 1(a) and 1(b) show the situation where
fluctuations with wavelength larger than l dominate the
dynamics. In (a), we see that the magnitude of the spin S?l
decays only slightly from the initial state but the direction
of the spin is randomized during the time evolution. Note
that in this case the distribution function of Sxl has a very

peculiar shape with two peaks at large positive and nega-
tive values. We call this regime, ‘‘spin diffusion’’ regime.
Figures 1(c) and 1(d) show the situation where fluctuations
with wavelengths shorter than l dominate. In this case S?l
and Sxl decay in the same time scale. We call this regime,

‘‘spin decay’’ regime. Below we argue that the crucial
parameter of the system is a dimensionless ratio propor-

tional to the length of the integration region l0 ¼ �2l
4Ks�s

.

When l0 � 1 the system is in the spin diffusion regime and
the other limit l0 � 1 is the spin decay regime.
Model.—Following the first �=2 pulse we have a two-

component Bose mixture with equal densities of both
species. Tomonaga-Luttinger liquid (TLL) approach,
which we use in this paper, focuses on the linearly dispers-
ing modes in the low energy part of the spectrum. For
simplicity, we consider the case when the interaction
strength among particles with spin up is the same as that
among particles with spin down. This condition can be
reached for the hyperfine states jF ¼ 1; mF ¼ �1i and
jF ¼ 2; mF ¼ þ1i of 87Rb that are commonly used in
experiments [1,5]. When this is the case, the charge and
spin parts of the Tomonaga-Luttinger Hamiltonian de-
couple and the spin part of the Hamiltonian is given by [18]

Hs ¼ cs
2

Z L=2

�L=2
dr

�
Ks

�
ðr�sðrÞÞ2 þ �

Ks

n2sðrÞ
�
: (1)

Here L is the total system size, nsðrÞ describes the local

spin imbalance (i.e., z component of the spin) ns ¼
c y

�ð12�z
��Þc � where c y

� is the creation operator of a

particle with spin� and�a is a component of Pauli matrix.
�sðr; tÞ describes the direction of the transverse spin com-

ponent �ei�s ¼ c y
�ð12�þ

��Þc � with � being the average

density for each species and �þ ¼ �x þ i�y. Variables ns
and �s obey canonical commutation relations ½nsðrÞ;
�sðr0Þ� ¼ �i�ðr� r0Þ. Ks is spin Luttinger parameter rep-
resenting interaction strength [5], and cs is spin-wave
velocity. In the weak interaction limit, these parameters

are related to physical parameters as cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gs�=m

p
, �s ¼

�cs
gs�

and Ks ¼ �s�=2, where m is the mass of the particle

and gs ¼ 4�2
@
2

m

a""þa##�2a"#
2 is the interaction strength in spin

channel where a�;� refers to s-wave scattering length

between hyperfine spin � and �. In this Letter, we focus
on the regime gs > 0 when the system is miscible. Our
approach can be extended to gs < 0 but will be limited to
times before z magnetization per atom becomes of the
order of 1. Harmonic Hamiltonian (1) can be diagonalized
by going to momentum space, and it takes the form

Hs ¼
X
k�0

csjkjbys;kbs;k þ
cs�

2Ks

n2s;0: (2)

The first and second term of (2) correspond to k � 0 and
k ¼ 0 part of the Hamiltonian, respectively, and ns;k rep-

resents the Fourier transform of nsðrÞ. This Hamiltonian
has a momentum cutoff set by the inverse of the spin

healing length ��1
s . The operators bys;k create spin excita-

tions with momentum k, and these spin excitations are the
main focus of our study.

Transverse part of the spin operator ~Sl is given by

Sxl ¼
Z l=2

�l=2
dr�cosð�sðrÞÞ; Syl ¼

Z l=2

�l=2
dr�sinð�sðrÞÞ:

(3)

0

0.05

0

0.05

0

0.02

0.04

0.06

a

c d

1

0

-1
1

0

-1

1

0

-1

1

0

-1
10 11- 0-1 10-1

0

0.02

0.04

0.06

b

time=0 time=2.4 time=4.8

time=7.2 time=9.6 time=12

time=0 time=2.4 time=4.8

time=7.2 time=9.6 time=12

time=0 time=2.4 time=4.8

time=7.2 time=9.6 time=12

time=0 time=2.4 time=4.8

time=7.2 time=9.6 time=12

10 11- 0-1 10-1

FIG. 1 (color). (a),(c) Evolution of joint FDF Px;y
l with short

integration length l=�s ¼ 10 [top, (a)] and long integration
length l=�s ¼ 30 [bottom, (c)]. (b),(d) Corresponding FDF for
spin x, Px

l with short integration length l=�s ¼ 10 [top, (b)] and

long integration length l=�s ¼ 10 [bottom, (d)]. Here L=�s ¼
200, Ks ¼ 20. Time is measured in units of �s=cs.
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When describing spin dynamics, one typically considers
the time evolution of expectation values hSal ðtÞi. However
important information is also contained in the shot-to-shot
fluctuations of Sal ðtÞ. Such quantum noise is captured by

the full distribution functions (FDF) of spin operators,
Pa
l ð�; tÞ [11]. In particular, high moments of Sal ðtÞ can be

obtained from these FDFs Pa
l ð�; tÞ. Physically, Pa

l ð�; tÞd�
is the probability that a single measurement of the spin
operator Sal at time t gives a value between � and �þ d�.
In experiments, Pa

l ð�; tÞ can be obtained by making histo-

grams of the measurement results of Sal ðtÞ.
To describe the time evolution of spin operators (3), we

need to characterize the initial state of the system after the
first �=2 rotation [19]. Classically one expects the initial
state to be the eigenstate of �sðrÞ with eigenvalue zero for
all r. However, such a state is unphysical in quantum
mechanics since it leads to infinite uncertainty of the
conjugate variable nsðrÞ, and thus, to infinite energy. It is
more sensible to consider an initial state that has a small
uncertainty in�s at the expense of enhanced fluctuations in
ns, which is a squeezed state in the �s, ns variables [5,21].
We observe that the spin of each individual atom is inde-
pendently rotated by the first�=2 pulse into the x direction,
so the initial state satisfies hSzðrÞSzðr0Þi ¼ �

2 �ðr� r0Þ.
Thus we find a Gaussian state for the spin operator Sz in
momentum space

jc 0i ¼ 1

N
exp

�X
k�0

Wkb
y
s;kb

y
s;�k

�
j0ijc s;k¼0i; (4)

where 2Wk ¼ ð1� �kÞ=ð1þ �kÞ, �k ¼ jkjKs=�� andN
is the overall normalization of the state. For the uniform
part of the spin operator we also have a squeezed state
hns;0jc s;k¼0i ¼ expð� 1=ð2�Þn2s;0Þ. We note that model

(1) has a short distance cutoff, so the � function in
hSzðrÞSzðr0Þi should be understood as rounded off on the
scale of �s, which is implicit in the momentum cutoff in
Eq. (4).

The time evolution of the state (4) leads to Wk !
Wke

2icsjkjt. From the resulting expression for the state at
time t, one can readily calculate the decay of Ramsey
fringes given by hSxl ðtÞi, which is independent of integra-

tion length l (See also [5,21]). To calculate the time evo-
lution of FDF, we define instantaneous annihilation
operators 	ksðtÞ such that applying 	ksðtÞ on the state

expðWke
2icsjkjtbys;kb

y
s;�kÞj0i gives zero. Using operators

	ksðtÞ, one can apply the approach described in
Refs. [1,11] for calculating distribution functions of equi-
librium systems. After direct calculation we find [20]

Px;y
l ð�; tÞ ¼ Y

k

Z 1

�1
e�
2

rsk
=2d
rsk

Z �

��
d
�sk

� �

�
�� �

Z l=2

�l=2
drei�ðr;t;f
jskgÞ

�
; (5)

�ðr; t; f
jskgÞ ¼
X
k


rsk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj�s;kðtÞj2i

L

s
sinðkrþ 
�skÞ;

hj�s;k�0j2i ¼
�
��

jkjKs

�
2 sin2ðcsjkjtÞ

2�
þ cos2ðcsjkjtÞ

2�
;

hj�s;k¼0j2i ¼ 1

2�
þ

�
cs�t

Ks

�
2 �

2
;

(6)

where the real and imaginary part of � corresponds to x

and y component of ~Sl, respectively. Equation (5) and (6)
allow a simple physical interpretation. Function �ðr; t; f
gÞ
defines the local direction of transverse magnetization,
which results from the summation over spin-wave like
modes sinðkrþ 
�skÞ. Amplitudes of individual modes
are given by the time dependent expectation values
hj�s;kðtÞj2i and by the set of random variables 
rsk drawn

from a Gaussian ensemble. Equation (5) and (6) reflect the
key feature of dynamics of the quadratic Luttinger model
(1): an initial Gaussian state for �s;k remains Gaussian at

all times.
Time evolution of hj�s;kðtÞj2i following the first �=2 ro-

tation can be understood as the free dynamics of a har-
monic oscillator. From the conjugate nature of �s;k and

ns;k, we find hj�s;kð0Þj2i ¼ 1
4

1
hjns;kð0Þj2i ¼ 1

2� at t ¼ 0. Subse-

quently hj�s;kðtÞj2i oscillates between the minimal value in

the initial state and some maximum value hj�s;kj2imax at

the frequency of a harmonic oscillator csjkj. hj�s;kj2imax

can be estimated from energy conservation. Since the
initial state was squeezed with respect to �sk, most of the
energy of the mode is stored in the interaction term jns;kj2.
Therefore the total energy of the harmonic oscillator for
momentum k can be approximated by �cs�

Ks
, which in turn

gives hj�s;kj2imax � 2�2�
K2

s k
2 ¼ 1

2� ð ��
jkjKs

Þ2. These considerations
lead to the dynamics of phase fluctuation amplitude of the
form in (6). We note that the spin fluctuations are domi-
nated by small momentums since the maximum fluctuation
amplitude is suppressed as 1=k2 for large momentum. This
justifies our analysis based on the Tomonaga-Luttinger
theory.
Results of numerical plots based on Eq. (5) and (6) are

shown in Fig. 1. In Fig. 2(a) we also present the distribution
function P?

l of the magnitude square of the integrated spin

ðS?l Þ2, which clearly demonstrates the difference between

the ‘‘spin diffusion’’ and spin decay regimes. The character
of these distribution functions can be understood from the
following arguments. We first discuss the ‘‘spin diffusion’’
regime, where the characteristic wavelength of spin fluc-
tuations is longer than the integration length l [Figs. 1(a)
and 1(b)]. In this regime, all spins within l essentially point
in the same direction and S?l remains large even after a

long time evolution. Thus we find a peak at ðS?l Þ2 � 1 in

the distribution function P?
l (red line). In the other regime

of spin decay [Figs. 1(c) and 1(d)], the typical length scale
of spin fluctuations is shorter than the integration length l.
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In this case, integration of spins over l is akin to taking a
random walk in 2D plane and accordingly, the distribution
for ðS?l Þ2 approaches exponential form with a peak at

ðS?l Þ2 ¼ 0 in P?
l (blue line). In the intermediate regime,

we observe two peak structure for P?
l , where the distribu-

tion exhibits both characteristic peaks (green line). We can
understand the condition that separates these spin decay
and spin diffusion type dynamics in the following way.
Deviation of spin angles at r ¼ l relative to r ¼ 0 can be

estimated from �� � 1ffiffiffi
L

p P
k
rsk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj�s;kj2imax

q
sinðklÞ. A

typical magnitude of �� is given by hð��Þ2i where the
average is taken over fluctuations of 
rsk. The factor sinðklÞ
in �� effectively limits momentum integration range to

k > 2�=l, so hð��Þ2i � �2l
2Ks�s

. When hð��Þ2i1=2 is smaller

than 2� the system is in the spin diffusion regime. When

hð��Þ2i1=2 becomes of the order of 2� and larger, the
system enters the spin decay regime. The crossover takes

place around �2l
4Ks�s

� 1.

In the spin diffusion regime, the dynamics of S?l and Sxl
display different time scales as can be seen in Fig. 2(b). In
order to understand this separation of time scale, we note
that the magnitude of the integrated spin S?l is only

affected by fluctuations with short wavelengths, 
 < l,
for which dynamics takes place at short time scale.
Hence hS?l i decays until the time t? � 2�l=cs [see

Eq. (6)] and then it reaches a saturated value. On the other
hand, Sxl is affected by excitations of all wavelengths, so

hSxl i decays until it reaches 0. These behaviors are shown in
Fig. 2(b), where we compared the decay of hS?l i for various
segment length l and hSxl i. Nontrivial time evolution of the

distribution functions Px
l , P

x;y
l and especially the striking

contrast of the spin diffusion and spin decay regimes
should provide unique signatures of the non-mean-field
character and multimode dynamics of 1D systems.

Summary.—We provided a theoretical analysis of
Ramsey interference experiments with 1D quasiconden-
sates, and showed that the time evolution of the full distri-

bution function contains unique signatures of the many-
body dynamics in one dimension.
This work was supported by NSF grant DMR-0705472,

Harvard MIT CUA, DARPA OLE program, AFOSR
MURI, and Swiss NSF.
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