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An analytical model for the self-modulation instability of a long relativistic proton bunch propagating

in uniform plasmas is developed. The self-modulated proton bunch resonantly excites a large amplitude

plasma wave (wakefield), which can be used for acceleration of plasma electrons. Analytical expressions

for the linear growth rates and the number of exponentiations are given. We use full three-dimensional

particle-in-cell (PIC) simulations to study the beam self-modulation and transition to the nonlinear stage.

It is shown that the self-modulation of the proton bunch competes with the hosing instability which tends

to destroy the plasma wave. A method is proposed and studied through PIC simulations to circumvent this

problem, which relies on the seeding of the self-modulation instability in the bunch.
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Plasma based particle acceleration, both by lasers and
particle beams, has made significant progress over the past
years and now routinely accelerates electrons in the GeV
energy regime [1]. However, on the path towards the TeV
energy range, one still has to solve many problems. The
laser technology has to be greatly improved in terms of
power, stability, and repetition rate. The electron-beam-
driven wakefield acceleration has the fundamental problem
of the transformer ratio limit [2]. It arises because an
electric field of the same order drags the driver as the
one that accelerates the witness beam; the maximum
achievable energy gain in one single stage is limited by
the energy of particles in the driver beam.

Recently, it has been proposed to harness a TeV proton
bunch driver such as the one available from the CERN
LHC for the TeV regime of electron acceleration in plas-
mas [3]. Notwithstanding that the scheme demands a
short—of a submillimeter length—proton driver bunch,
all the presently available proton bunches are much longer,
usually tens of centimeters long. These available long
proton bunches at CERN LHC cannot generate a high
amplitude wakefield directly. Indeed, for an efficient exci-
tation of wakefields, the proton bunch length must be close
to the plasma wavelength �p ¼ 2�c=!p, where c is the

speed of light and !2
p ¼ 4�nee

2=me is the square of the

plasma frequency, where ne is the plasma electron density
and e and me are the electron charge and mass, respec-
tively. In the simplest way, plasma electrons can be under-
stood as an ensemble of oscillators oscillating at plasma
frequency. To enforce the resonant swinging of these os-
cillators, the driver must contain a Fourier component
close to the plasma frequency, a criterion easily fulfilled
by a short dense driver but not by a long driver. The
situation will change, however, if the long driver is modu-

lated at the plasma frequency. Then, even a tenuous proton
beam can excite a high amplitude plasma wave.
In this Letter, we develop an analytical model for the

self-modulated regime of the proton bunch acceleration of
electrons along the lines of the self-modulated laser wake-
field accelerator (SMLWFA) concept [4]. The underlying
physical mechanism is very much the same as in the
SMLWFA concept. A long proton bunch (L > �p) gener-

ates a wake within its body, which modulates the bunch
itself, leading to the positive feedback and unstable modu-
lation of the whole bunch along the bunch propagation
direction. This self-modulation splits the long proton
beam into ultrashort bunches of length ��p, which reso-

nantly drive the plasma wake. This plasma wake can be
used to accelerate electrons, just as in the SMLWFA
concept.
The self-modulation of the proton bunch essentially

occurs due to the action of the transverse wakefields on
the bunch itself. This is different from the modulation
caused by the electrostatic two-stream instability, which
arises due to relative streaming between the proton bunch
and the background plasma, and causes excitation of the
longitudinal field. Because of the very anisotropic response
of relativistic beam particles to longitudinal and transverse
forces, modulation caused by the longitudinal force be-
comes very inefficient in the case of a relativistic driver.
This is precisely the reason that the transverse instabilities,
such as the self-modulation instability, have higher growth
rates than the longitudinal two-stream instability. In the
context of a proton beam modulation, the two-stream in-
stability is analogous to the forward Raman scattering of
the laser pulse in laser driven wakefield acceleration.
Although, the field of the beam-plasma instabilities is
very rich, the analysis of the self-modulation instability
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of long proton bunches has been missing from the literature
till now.

We begin with the analytical theory of the beam self-
modulation based on the beam-envelope approach.
Asymptotic expressions for the growth rate are obtained,
and a simple semianalytical code is developed to simulate
the early stage of the instability. To substantiate the ana-
lytical results, we also perform fully electromagnetic three-
dimensional particle-in-cell (3D PIC) simulations. Finally,
we dwell upon the competition of self-modulation insta-
bility with the hose instability [5,6] of the proton bunch,
and evaluate a proposal, by PIC simulations, to alleviate
the effect of hosing instability to produce an efficient
excitation of wakefield by proton beams.

Following the approach of Ref. [7], we can write down
the two-dimensional expressions for the wakefields of an
axisymmtric beam driver of an arbitrary profile by utilizing
the Euler variables � ¼ �0ct� z, � ¼ t, where�0 ¼ �z=c
(�z is the velocity of the bunch), and assuming the quasi-
static approximation (@� ’ 0) for the beam driver. Inside
the body of a long proton bunch (0< �< L), these read as

Ezðr; �Þ ¼ 4�k2p
Z �

0

Z 1

0
r0dr0�ðr0; �0ÞI0ðkpr<Þ

� K0ðkpr>Þd�0fð�0Þ coskpð�� �0Þ; (1)

W?ðr; �Þ ’ ðEr � B�Þðr; �Þ
¼ 4�kp

Z �

0

Z 1

0
r0dr0@r0�ðr0; �0ÞI1ðkpr<Þ

� K1ðkpr>Þd�0fð�0Þ sinkpð�� �0Þ; (2)

where �ðr; �Þ ¼ �0c ðrÞfð�Þ is the charge density of the
bunch, I0ð1Þ and K0ð1Þ are the modified Bessel functions of

order 0(1), r< ¼ minðr; r0Þ and r> ¼ maxðr; r0Þ, kp ¼
!p=c is the background plasma wave number, L is the

length of the bunch in the ẑ direction, and we have assumed
�0 � 1.

The equation for the beam envelope for a long proton
bunch with a Heaviside step-function profile [c ðrÞ ¼
�ðrb � rÞ, rb being the radius of the beam envelope] in
radial direction and an arbitrary profile fð�Þ in � is written
as

@2rb
@�2

�M2

r3b
¼ �!2

b

	0

Z �

0
rbð�0ÞI1fkprbð�0ÞgK1fkprbð�0Þg

� fð�0Þkp sinkpð�� �0Þd�0; (3)

where 	0 ¼ ð1� �2
0Þ�1=2 is the relativistic Lorentz factor

of the beam, !2
b ¼ 4��0e=mb is the square of the non-

relativistic beam-plasma frequency of the proton bunch,
�0 ¼ nbe is the charge density of the proton bunch, mb

being the mass of the beam particle. The beam-envelope
radius rb ¼ rbð�Þ is a function of � on account of pinching
caused by the wakefield on the beam. The constant M

arises from the integration of the � component of the
equation of motion for the beam electrons yielding the
angular momentum constant, and is associated with the
transverse emittance of the beam [8]. For the demonstra-
tion of the self-modulation instability of a proton beam, we
consider a thin beam (kprb � 1) with a Heaviside step-

function profile [fð�0Þ ¼ �ð�0Þ] and take M ¼ !�0r
2
b0,

where !2
�0 ¼ !2

b=2	0 and rb0 is the initial radius of the

beam. The beam-envelope equation, in normalized coor-
dinates (rb ¼ rb=rb0, � ¼ !�0�, � ¼ kp�), reads as

@2rbð�Þ
@�2

� 1

r3bð�Þ
¼ �

Z �

0
rbð�0Þ sinð�� �0Þd�0: (4)

On perturbing Eq. (4) about the equilibrium radius rb ¼
1þ 
rb, and assuming 
rb ¼ 
r̂b expði�Þ, j@
r̂b=@�j �
j
r̂bj, we obtain ð@2� þ 1Þð@2� þ �Þ
r̂b ¼ �
r̂b, where

� ¼ 3. We assume the perturbation of the form

r̂bð�; �Þ � expði
!�� ik�Þ, and obtain the dispersion
relation D � ðk2 � 1Þð
!2 � �Þ ¼ �1. The dispersion
relation gives two complex k roots (one in the upper half
and another in the lower half of the complex-k plane) for

real 
! (
ffiffiffiffi
�

p
< 
!<

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
). When Imð
!Þ ! 1, (i.e.,

j
!j ! 1), the roots of the dispersion relation reach the
real k axis, thus confirming the presence of a convective
instability [9]. For complex k, the perturbation acquires the
asymptotic form 
r̂bð�; �Þ / expð�ikr�Þ expðki�Þ, where
kr and ki are the real and imaginary parts of the complex-k
root. For ki > 0, the perturbation grows spatially in the � >
0 direction, while for ki < 0 (lower half of the k plane) it
grows spatially in the � < 0 direction, thus representing a
spatially amplifying wave.
One can derive asymptotic relations for the instability by

following the approach of Bers [10]. For sufficiently late
times, � > Le, where Le � 1=� is the e-folding length and
� is the growth rate of the instability, we solve this disper-
sion relation by letting 
!0 ¼ 
!� �k, where � ¼ �=�,
and setting Dð
!0; kÞ ¼ 0 and @Dð
!0; kÞ=@k ¼ 0 while
keeping 
!0 constant. This gives kð
!2 ��Þ2 ¼ 
!�.

We write 
! ¼ 
!1 �
ffiffiffiffi
�

p
. For j
!1j �

ffiffiffiffi
�

p
(early-

time asymptote), we get �e ¼ ð�=2�Þ1=2. The number of

exponentiation is given by Nee ¼ �e� ¼ ð��=2Þ1=2. For
j
!1j �

ffiffiffiffi
�

p
(late-time asymptote), we get the growth

rate as �l ¼ 31=3ð�=�Þ2=3=4. The number of exponentiation

is given by Nel ¼ �l� ¼ 31=3ð�2�Þ1=3=4. The expressions
for number of exponentiations in dimensional units can be
written as

Nee ¼
�

�

2
ffiffiffiffiffiffiffiffi
2	0

p kp�!p�

�
1=2

; (5)

Nel ¼ 31=3

4

�
�ffiffiffiffiffiffiffiffi
2	0

p k2p�
2!p�

�
1=3

; (6)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnb=neÞðme=mbÞ
p

.
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We have solved Eq. (4) numerically to demonstrate the
self-modulation instability of the beam envelope for a
gently rising beam density profile, which flattens at
�=�p ¼ 10 (here � is the unnormalized Euler variable).

The initial radius of the beam is rb0=�p ¼ 0:1. The

boundary conditions are rbð�; 0Þ ¼ 1, @rbð�; 0Þ=@� ¼ 0.
Figure 1(a) shows the self-modulation instability of the
beam envelope. The beam’s head, �=�p ¼ 0, is diffracting,

while the self-modulation grows with increasing distance
from the front of the beam. The self-modulation instability
leads to the generation of strong axial field, depicted in
Fig. 1(b). The self-modulation of the beam grows in ac-
cordance with both the early-time [Fig. 1(c)] and the late-
time [Fig. 1(d)] asymptotes, describing excellent agree-
ment with the analytical scalings.

The propagation of the proton beam in plasmas also
suffers from the onset of the hose instability which, in
the limit nb � ne, is also known as the transverse two-
stream instability [4,5]. For a nonaxisymmetric beam
(@� � 0), the hose instability is a concern. For a perfectly
axisymmetric beam, such as the one assumed in our cal-
culations, it does not occur. The temporal growth rate of
the hose instability of a focused electron beam could be
comparable to or less than the growth rate of the self-
modulation instability. In a uniform plasma and in the limit
of thick plasma skin depth kprb � 1, the long-time asymp-

totic of the instability scales as �h / ðk�z0=!p�
0Þ2=3!p,

where k� ¼ kb=	
1=2
0 , kb ¼ !b=c being the beam betatron

wave number, �0 ¼ t� z=�z, z0 ¼ z [4]. The ratio of

growth rates for two instabilities scales as �l=�h /
ð1=�Þ1=3ð	0=2Þ1=6 � 1, while � � 1. Yet, it has time to

develop and, if present, can severely affect the wakefield.
Thus, there is a big concern that the hosing instability
occurring simultaneously with the beam self-modulation
may destroy the plasma wakefield. One of the possibilities
to circumvent this problem is to preseed the self-
modulation instability, so that the beam self-modulation
does not have to grow from noise. This seeding would
greatly increase both the shot-to-shot reproducibility and
the quality of the wakefield. Additionally, the development
of the high amplitude wakefield will require much shorter
propagation distance, which will further limit the growth of
the hose instability. The seed of the self-modulation insta-
bility can be accomplished either by a short driver in front
of the proton beam [11] or by a modification of the proton
beam itself by cutting away the leading part of the proton
beam in a ‘‘dogleg’’ device. A dogleg device employs
dipole and quadrupole focusing arranged in a way to either
compress or stretch the beam. Adjustable trains of short
electron bunches have been produced by placing a mask in
the dogleg section of the beam line [12]. This method, in
principle, can produce a hard-cut proton beam.
Because the hosing instability is not a part of the beam

envelope analytic description (3), we have to rely here on
3D PIC simulations, which were performed using the VLPL

code [13]. We simulate two cases. In the first case, the
beam has a smooth 3D Gaussian density profile nb1ðr; zÞ ¼
n0b expð�z2=�2

zÞ expð�r2=�2
rÞ, where r2 ¼ x2 þ y2. In the

second case, the beam is hard cut in the middle, nb2ðr; zÞ ¼
n0b�ð�zÞ expð�z2=�2

zÞ expð�r2=�2
rÞ, where �ðzÞ is again

the Heaviside step function. The plasma is assumed to be
singly ionized lithium. The electron density ne of the
plasma is 25 times higher than the peak beam density,
i.e., n0b ¼ 0:04ne. In both cases, the proton beam is as-

sumed to have 24 GeVenergy. The beam in the simulations

has a rms transverse momentum spread of
ffiffiffiffiffiffiffiffiffiffi
hp2

?i
q

=mbc ¼
4:5� 10�3. The beam radius is kp�r ¼ 2�� 0:25, while

the beam length is kp�z ¼ 2�� 20. The beam moves in

the ẑ direction with a relativistic Lorentz factor 	0 ¼ 25.

FIG. 1 (color online). Panel (a) shows the beam-envelope
radius evolution with �=�p at a time � ¼ 4:3. Panel (b) depicts

the on-axis axial field generated by the beam. Panels (c) and (d)
show the comparison of the amplitude of the beam’s radius
perturbations from Eq. (4) (solid lines) with the asymptotic
relations (dash-dotted lines) for early- and late-time asymptotes,
respectively.

FIG. 2 (color online). 3D PIC simulation results for the smooth
Gaussian beam (a),(b) and the hard-cut half-Gaussian (c),(d).
Frames (a) and (c) show the accelerating wakefield Ez, while
frames (b) and (d) depict the beam density distribution.

PRL 104, 255003 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
25 JUNE 2010

255003-3



The simulation results showing the on-axis generated
wakefield and the self-modulated beam are given in Fig. 2
in a ZX plane. Figures 2(a) and 2(b) show the smooth
Gaussian beam case, while Figs. 2(c) and 2(d) correspond
to the second case of the hard-cut Gaussian beam. One sees
that in the first case when both instabilities have to grow
from noise, the hosing instability competes with the self-
modulation instability. Although the beam is split into
small beamlets, these density perturbations are located
slightly off axis, and even some filamentation can be
observed. On the contrary, when the self-modulation in-
stability is seeded by the hard cutting of the beam in the
second case, the wakefield is very regular and axisymmet-
ric. To compare the amplitude of the excited wakefields in
both cases, we plot the on-axis accelerating field in Fig. 3.
The wakefield for the hard-cut Gaussian beam is approxi-
mately 5 times larger than that for the smooth Gaussian
case. The maximum accelerating field normalized to the
wave breaking field is eEz=mec!p � 0:6. Thus, it is close

to the nonlinear regime. Figure 4 shows the energy spec-
trum evolution of the proton beam. One observes the
spectrum broadening as the wakefield is developing.
Finally, some protons acquire energy gain of nearly 1 GeV.

In summary, we have demonstrated the self-modulation
instability of a long proton bunch, which can resonantly
excite the plasma wave needed for the TeV regime of
electron acceleration. We have analyzed the seeding of
the self-modulation instability in order to alleviate the
effects of the hose instability on the plasma wave. The
seeding is accomplished by hard cutting a Gaussian beam.
The simulation results of the hard-cut Gaussian beam show
that in this case the generated wakefield acquires substan-
tially high values. Further, through the combination of the
seeding of the self-modulation instability and suitably re-
stricting the beam propagation length in plasmas, one can
hope to excite large amplitude plasma waves, and this
could pave the way for the successful realization of the
TeV regime of electron acceleration scheme.
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