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When string or M theory is compactified to lower dimensions, the U-duality symmetry predicts so-

called exotic branes whose higher-dimensional origin cannot be explained by the standard string or

M-theory branes. We argue that exotic branes can be understood in higher dimensions as nongeometric

backgrounds orU folds, and that they are important for the physics of systems which originally contain no

exotic charges, since the supertube effect generically produces such exotic charges. We discuss the

implications of exotic backgrounds for black hole microstate (non-)geometries.
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Introduction.—String theory includes various extended
objects as collective excitations, such as D-branes. The
U-duality symmetry [1] which maps these objects into one
another has played a pivotal role in the development of
string theory and provided crucial insights into its non-
perturbative behavior. When string orM theory is compac-
tified to lower dimensions, the U-duality group gets
enhanced, relating objects that were not related in higher
dimensions. For example,M theory compactified on Tk has
a discrete U-duality group known as EkðkÞðZÞ [1].

In the lower (d ¼ 11� k) dimensional theory, if we start
from a codimension-two object obtained by partially wrap-
ping a known 11D object and act by U duality on it, we
start to produce objects whose higher-dimensional origin is
unknown; they are called exotic branes [2]. In type II
language, some of them have a tension proportional to
g�3
s or g�4

s . For example, in type II string compactified
on T2, consider an NS5-brane extending along six of the
eight remaining noncompact directions, not wrapping the
internal T2. If we perform a T duality along both T2

directions, we obtain an exotic brane called 522. We will
see later that this is a nongeometric background known as a
T fold [3]; as we go around the exotic brane, the internal T2

is nontrivially fibered and does not come back to itself, but
rather to a T-dual version.

One may think that such codimension-two objects are
problematic due to logarithmic divergences [4], and that
we do not need them if we are concerned with the physics
of nonexotic states. However, this is not true because of the
supertube effect [5]—the spontaneous polarization phe-
nomenon that occurs when we bring a particular combina-
tion of charges together. A basic example is

D0þ F1ð1Þ ! D2ð1c Þ (1)

in which D0-branes and fundamental strings along x1

polarize into a D2-brane extending along x1 and a closed
curve in the transverse directions parametrized by c . Note
that the D2 charge did not exist in the original configura-
tion. Since the D2 is along a closed curve, there is no net
D2 charge, but only a D2 dipole charge. The microscopic

entropy of theD0-F1 system can be recovered by counting
the possible c curves that the system can polarize into [6].
Even if we start with a configuration of nonexotic

charges, the supertube effect can produce exotic charges.
Because the exotic charges thus produced are dipole
charges, there is no net exotic charge at infinity and the
problem of log divergences does not arise. This implies
that exotic states are relevant even for the physics of
systems which do not originally contain exotic charges.
This is especially interesting in the context of black hole

physics where one typically considers a configuration of
multiple (nonexotic) charges. We will argue later that the
supertube effect and exotic charges are relevant for the
understanding of the physics of such black holes.
Exotic states and their higher-dimensional origin.—If

we compactify M theory on T8 or type IIA/B string theory
on T7 down to 3D, we obtain N ¼ 16 supergravity [7]
with 128 scalars (note that gauge fields can be dualized into
scalars in 3D). This theory has E8ð8Þ as the U-duality group

which is broken to the discrete subgroup E8ð8ÞðZÞ in string

theory [1]. This E8ð8ÞðZÞ is generated by S and T dualities

along the internal torus. For example, in type IIB, a
D7-brane wrapped on the T7 yields a point particle in three
dimensions. Acting with S and T dualities, we can obtain
all other states in the ‘‘particle multiplet’’ of the U-duality
group as explained in [2].
In Table I, we list the states in the particle multiplet,

including the exotic ones. The notation for nonexotic states
is standard; e.g., P denotes a gravitational wave and KKM
denotes a Kaluza-Klein monopole. For type II exotic states,
we follow [2] and denote them by how their mass depends
on the T7 radii. The mass M of bcn depends linearly on b

radii and quadratically on c radii. For bðd;cÞn , M also de-
pends cubically on d radii. Moreover, M is proportional to
g�n
s . For example, the mass of 522 depends on the radii Ri,

i ¼ 3; . . . ; 9 of T7 as M ¼ R3 � � �R7ðR8R9Þ2=g2s l9s . We
often display how the state ‘‘wraps’’ the internal T7 as
522ð34567; 89Þ. In this notation, the KK monopole is de-

noted by 512. In M theory, we use a similar notation except

that we drop the subscript n. Using the transformation rules
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for the radii Ri and gs under S and T dualities, we can read
off how those states transform into one another [2].

In the 3D theory, we would have 128 gauge fields if we
could dualize all the scalars into gauge fields [2]. However,
as we can see from Table I, there are as many as 240
charged particles [8], and this discrepancy (240 versus
128) in the 3D theory is not understood [2]. For d � 4,
this issue does not arise because we obtain just as many
charged particles as gauge fields [2]. Here, we argue that
the higher-dimensional origin of exotic states consists of
nongeometric backgrounds or U folds [3,9].

The argument is simple. For example, consider a
D7-brane wrapping T7, which is (magnetically) coupled

to the RR 0-form Cð0Þ. From the 3D viewpoint, the
D7-brane is a point particle and, as we go around it, the

3D scalar � ¼ Cð0Þ shifts as � ! �þ 1. Namely, in 3D,
the ‘‘charge’’ of the point particle is nothing but the mo-
nodromy of the scalar � around it. This symmetry of
shifting � by one gets combined with other dualities
such as S and T dualities to form the U-duality group
GðZÞ ¼ E8ð8ÞðZÞ, and the scalar � gets combined with

other scalars into a matrix M parametrizing the moduli
space M ¼ SOð16ÞnE8ð8ÞðRÞ=E8ð8ÞðZÞ. U duality means

that we can more generally consider a 3D particle around
which M jumps by a general U-duality transformation.
Thus, the charge of a 3D particle is defined by the
U-duality monodromy around it. This can be regarded as
a non-Abelian generalization of the usual notion of Uð1Þ
charges for which the monodromy is an additive shift.
Clearly, the number of different charges thus generalized
is not in general equal to that of gauge fields, which
resolves the above puzzle.

If we lift such a monodromy to 10D/11D, we obtain a
configuration in which the internal space is nontrivially
fibered as we go around the particle and glued together by a
U-duality transformation. So, exotic states correspond in
10D/11D to nongeometric backgrounds, or ‘‘U folds’’ [3].
To our knowledge, the interpretation of exotic states as U
folds has not appeared in the literature. Note that this
construction differs from the more familiar U folds in the
context of string compactifications [9], where U duality is
nontrivially fibered over a noncontractible circle in the
internal manifold, not over a contractible circle in the
noncompact directions.

Let us discuss how to classify ‘‘charges’’ defined by the
monodromies around them. First, assume the existence of a
charge with monodromy q. Namely, as we go around the
particle in three dimensions, the moduli matrix M under-
goes the monodromy transformationM ! Mq, q 2 GðZÞ.

If we go to another U duality frame by a U-duality trans-
formation U 2 GðZÞ, then this becomes ~M ! ~M ~q with
~M ¼ MU, ~q ¼ U�1qU. So, in the dual frame, there exists
a charge with monodromy ~q. Now, let us change the moduli
~M adiabatically to the original value M. If the charge is
BPS, an object with monodromy ~q continues to exist,
implying the existence of the charge ~q even for the original
value of the moduli M (assuming that there is no line of
marginal stability). So, starting from a charge q, we can
generate other possible charges by conjugation ~q ¼
U�1qU. Note that this does not mean that we can generate
all charges that exist in the theory by conjugation; there can
be many conjugacy classes in the group GðZÞ and we can-
not generate charges in different conjugacy classes. Also,
there can be non-BPS charges for which the above argu-
ment (of changing moduli adiabatically) does not apply.
As a simple example, consider a D7-brane. Around it,

there is an SLð2;ZÞ monodromy given by

T ¼ 1 1
0 1

� �
:

Let us conjugate this with a general SLð2;ZÞ matrix

U ¼ s r
q p

� �
:

The conjugated charge is

~T ¼ U�1TU ¼ 1þ pq p2

�q2 1� pq

� �
;

which is the monodromy of the standard (p, q) 7-brane.
Note that, although U has 3 independent parameters, the
resulting charge ~T has only 2 parameters. In this sense,
there exist only two different charges.
So, the set of all possible charges we can obtain from a

given one q byU duality is its conjugation orbit. This orbit
is a subset of the discrete non-Abelian ‘‘lattice’’ GðZÞ, and
it makes no sense to ask how many different charges there
are in it. However, to get a qualitative idea of the size of the
orbit, we can replace GðZÞ by the continuous group GðRÞ
and count the dimension of the (now continuous) orbit.
Using standard results on the dimensions of conjugacy
classes in noncompact groups and their relation to
slð2Þ-embeddings, one can show that, e.g., for GðZÞ ¼
E8ð8ÞðZÞ, the dimension of the orbit generated by a

1=2-BPS object such as the D7-brane is 58 [10]. The
240 states in Table I represent 240 particular points in
this orbit, which can be obtained by U dualities preserving
the rectangularity of the internal torus [2].
Supergravity description of exotic states.—To demon-

strate the above idea, let us present the supergravity metric

TABLE I. The point particle states and their multiplicities (boldface numbers) in string or M theory compactified to 3D.

Type IIA Pð7Þ, F1ð7Þ, D0ð1Þ, D2ð21Þ, D4ð35Þ, D6ð7Þ, NS5ð21Þ, KKMð42Þ, 522ð21Þ, 073ð1Þ, 253ð21Þ, 423ð35Þ, 613ð7Þ, 0ð1;6Þ4 ð7Þ, 164ð7Þ
Type IIB Pð7Þ, F1ð7Þ, D1ð7Þ, D3ð35Þ, D5ð21Þ, D7ð1Þ, NS5ð21Þ, KKMð42Þ, 522ð21Þ, 163ð7Þ, 343ð35Þ, 523ð21Þ, 73ð1Þ, 0ð1;6Þ4 ð7Þ, 164ð7Þ
M theory Pð8Þ, M2ð28Þ, M5ð56Þ, KKMð56Þ, 53ð56Þ, 26ð28Þ, 0ð1;7Þð8Þ
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for 522 as an example. This can be obtained by T dualizing
the KK monopole metric transverse to its worldvolume.
The KK monopole (512ð56789; 4Þ) metric is

ds2¼dx2056789þHdx2123þH�1ðdx4þ!Þ2; e2�¼1;

d!¼�3dH; H¼1þX
p

Hp; Hp¼R4=ð2j ~x� ~xpjÞ;

(2)

where ~xp are the positions of the centers in R3
123. Now

compactify x3, which is the same as arraying centers at
intervals of 2� ~R3 along x3. So,

H ¼ 1þ X
n2Z

R4=½2ðr2 þ ðx3 � 2� ~R3nÞ2Þ1=2�

� 1þ � log½ð�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ�2

p
Þ=r�; (3)

where � ¼ R4=2� ~R3 and we took a cylindrical coordinate
system ds2123 ¼ dr2 þ r2d�2 þ ðdx3Þ2. We approximated

the sum by an integral and introduced a cutoff� to make it
convergent (see [11,12]).H in (3) diverges as we send� !
1, but this can be formally shifted away by introducing a
‘‘renormalization scale’’ � and writing

HðrÞ ¼ hþ � logð�=rÞ ) ! ¼ ���dx3; (4)

where h is a ‘‘bare’’ quantity which diverges in the� ! 1
limit. The log divergence of H implies that such an infi-
nitely long codimension-two object is ill-defined by itself.
In physically sensible configurations, this must be regular-
ized either by taking a suitable superposition of
codimension-two objects [4] or, as we will do later, by
considering instead a configuration which is of higher
codimension at long distance.

Now let us do a T duality along x3. By the standard
Buscher rule, we obtain the metric for 522ð56789; 34Þ:

ds2¼Hðdr2þr2d�2ÞþHK�1dx234þdx2056789;

Bð2Þ
34 ¼�K�1��; e2�¼HK�1; K�H2þ�2�2:

(5)

In terms of the radii in this frame, � ¼ R3R4=2��
0.

Similar metrics of exotic states have been written down
(e.g., [12] considered 613), but they do not appear to have

been discussed in the context of U folds. As can be seen
from (5), as we go around r ¼ 0 from � ¼ 0 to 2�, the size
of the 3–4 torus does not come back to itself:

� ¼ 0: G33 ¼ G44 ¼ H�1;

� ¼ 2�: G33 ¼ G44 ¼ H=½H2 þ ð2��Þ2�: (6)

This can be understood as a T fold. If we package the 3-4
part of the metric and B field in a 4� 4 matrix [13]

M ¼ G�1 G�1B
�BG�1 G� BG�1B

� �
(12)

then the SOð2; 2;RÞ T-duality transformation matrix �
satisfying �t�� ¼ �,

� ¼ 0 12
12 0

� �
;

acts on M as M ! M0 ¼ �tM�. It is easy to see that the
matrix

� ¼ 12 0
2�� 12

� �

relates the � ¼ 0, 2� configurations in (6). Namely, 522 is a
nongeometric T fold with the monodromy �.
Although the mass of such a codimension-two object is

not strictly well-defined, we can still compute it by the
following ad hoc procedure. The Einstein metric in 3D is
given by ds23 ¼ �dt2 þHdx212. If �ij is the spatial metric

for constant t slices and G�	 is the Einstein tensor, we can

compute
ffiffiffiffi
�

p
G0

0 ¼ 1
2@

2
i logH. So, the energy is

M ¼ � 1

8�G3

Z
d2x

ffiffiffiffi
�

p
G0

0 ¼ � 1

16�G3

Z
dS � r logH:

If we use (4) and assume that Hðr ¼ 1Þ ¼ 1, then

M ¼ 1

16�G3

�
2��

HðrÞ
���������r!1

¼ ðR3R4Þ2R5 � � �R9

g2s l
9
s

;

as expected of a 522ð56789; 34Þ. Here, we used 16�G3 ¼
g2s l

8
s=R3 � � �R9. Although the 522 changes the asymptotics,

setting Hðr ¼ 1Þ ¼ 1 effectively puts it in an asymptoti-
cally flat space and allows us to compute its mass.
Similarly, one can derive the metric for other exotic

states appearing in Table I. The metric provides an ap-
proximate description, just as for ordinary branes, unless
the tension of the exotic branes is proportional to g�3

s or
g�4
s and the metric description breaks down.
Supertube effect and exotic states.—The above exotic 522

brane appears in d ¼ 3 dimensions, but exotic states are
relevant to physics in d � 4 dimensions as well. By dual-
izing the basic supertube effect (1), we can derive the
following spontaneous polarization:

D4ð6789Þ þD4ð4589Þ ! 522ð4567c ; 89Þ: (8)

The configuration on the left can be thought of as a
configuration in 4D, which puffs up into an extended
configuration of an exotic dipole charge along a curve in
R3

123. Such exotic dipole charges do not change the asymp-

totics of spacetime. Note that the original configuration of
D4-branes is part of the standard D0–D4 configuration
used for the black hole microstate counting in four dimen-
sions [14]. So, to understand the physics of such black
holes, it is unavoidable to consider exotic charges.
The supergravity solution for the configuration (8) can

be obtained by dualizing the solution for the supertube [15]
and is given by

ds2¼�f�ð1=2Þ
1 f�ð1=2Þ

2 ðdt�AÞ2þf1=21 f1=22 dx2123

þf1=21 f�ð1=2Þ
2 dx245þf�1=2

1 f1=22 dx267

þf1=21 f1=22 h�1dx289;

e2�¼f1=21 f1=22 h�1; Bð2Þ
89 ¼�h�1; Cð3Þ ¼��
þ�;

(14)
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where h ¼ f1f2 þ �2 and 
, � are 3-forms given by


¼ðf�1
2

~dt�dtÞ^dx4^dx5þðf�1
1

~dt�dtÞ^dx6^dx7

�¼ð�1��dtÞ^dx4^dx5þð�2��dtÞ^dx6^dx7

with ~dt ¼ dt� A. The c curve in (8) is an arbitrary closed
curve inR3

123, and fi¼1;2, A are harmonic functions sourced

along the curve [15]; see, e.g., [16] for their explicit
expressions. The 1-form �i and scalar � are related to fi,
A by d�i ¼ �3dfi, d� ¼ �3dA. In particular, for a circular
curve, they can be explicitly written down [15,16], includ-
ing �,�i [10]. As one goes around the curve, � undergoes a
shift � ! �þ q with q a constant proportional to the 522
dipole charge. This gives rise to a monodromic structure in
the metric and the B field, similar to the one in (5). Because
the exotic 522 charge in (8) is merely a dipole charge, the 4D
spacetime is still asymptotically flat.

The D0–D4 system studied in the context of 4D black
hole microstate counting [14] involves more stacks than
(8): D0, D4ð6789Þ, D4ð4589Þ, D4ð4567Þ. If we bring these
four stacks together, each pair is expected to undergo the
supertube effect:

D4ð6789Þ NS5ð6789c Þ 522ð6789;45c Þ
D0 D4ð4589Þ ! NS5ð4589c Þ 522ð4589;67c Þ

D4ð4567Þ NS5ð4567c Þ 522ð4567;89c Þ
: (10)

However, the charges on the right of (10) include combi-
nations of charges which can puff up again. A priori, there
is no reason to exclude such further puff-ups which will
produce all kinds of exotic charges appearing in Table I,
assuming that such puff-ups do not break supersymmetry.
As a different example, take the 3-charge M2 system [17]
which is a well studied configuration in the context of 5D
black hole microstate counting [18]. In this case, even if we
restrict to codimension-two puff ups, the following se-
quence seems logically possible:

M2ð56Þ M5ðc 789AÞ 53ð�789A;c 56Þ
M2ð78Þ ! M5ðc 569AÞ ! 53ð�569A;c 78Þ !
M2ð9AÞ M5ðc 5678Þ 53ð�5678;c 9AÞ

. . . ;

where ‘‘A’’ denotes the x10 direction. Namely, the system
can polarize into exotic branes extended along a two-
dimensional surface parametrized by c , � in R4

1234. In

the two-charge system [19], entropy comes from the Higgs
branch of the worldvolume theory associated with the
intersection of two stacks of branes. In gravity, the same
entropy is explained by the degrees of freedom coming
from the fluctuations of the one-dimensional geometric
object which is the result of puffing up the intersection
[20]. In the three-charge system, the triple intersection of
three stacks of branes leads to a more complicated Higgs
branch and larger entropy. It is conceivable that the fluc-
tuations of the above two-dimensional exotic object that
naturally appears, with its larger number of degrees of
freedom, account for the entropy of the 3-charge system.
It would hence be very interesting to construct nongeomet-

ric solutions involving such exotic charges to see if they
can really reproduce the expected entropy. The fact that the
three-charge supergravity microstates constructed thus far
(see, e.g., [21,22]) do not seem enough to account for the
entropy of the three-charge black hole [22] may be related
to the nongeometric nature of exotic branes that have been
overlooked.
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