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We propose new methods to extend the renormalization group transformation to complex coupling

spaces. We argue that Fisher’s zeros are located at the boundary of the complex basin of attraction of

infrared fixed points. We support this picture with numerical calculations at finite volume for two-

dimensional OðNÞ models in the large-N limit and the hierarchical Ising model. We present numerical

evidence that, as the volume increases, the Fisher’s zeros of four-dimensional pure gauge SUð2Þ lattice
gauge theory with a Wilson action stabilize at a distance larger than 0.15 from the real axis in the complex

� ¼ 4=g2 plane. We discuss the implications for proofs of confinement and searches for nontrivial

infrared fixed points in models beyond the standard model.
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The renormalization group (RG) method has played a
prominent role in advancing our understanding of strongly
interacting and strongly correlated systems. A question of
central importance in this context is to find out if the
physical spectrum of gauge theories, sigma models, or
Hubbard models contains massless particles, such as gauge
or Nambu-Goldstone bosons, or if a mass gap is generated
dynamically. For asymptotically free theories, this ques-
tion can be addressed by studying the (marginally relevant)
RG flows coming out of the weakly coupled fixed point. If
these RG flows end at the strongly coupled fixed point, the
correlations among local observables decay exponentially
with the separation (mass gap) and Wilson loops decay
exponentially with their area (confinement). Showing rig-
orously that this statement correct is a possible strategy [1]
to prove confinement in non-Abelian gauge theories on the
lattice.

Confinement can be lost by either introducing a finite
temperature or enough matter fields to modify the running
of the coupling constant. In particular, if enough species of
fermions are added without spoiling asymptotic freedom,
one may expect a nontrivial infrared (IR) fixed point with
conformal symmetry [2]. Recently, there has been a re-
newed interest in this possibility to build models for pos-
sible new physics beyond the standard model. Various
extensions of QCD have been studied [3]. Other scenarios
involving multiple confinement-deconfinement transitions
were also proposed in Refs. [4]. Establishing the existence
of an IR fixed point is often controversial and it would be
desirable to find criteria independent of the RG method
used.

In this Letter, we show that considerable insight on these
questions can be obtained by extending the RG flows in
complex coupling space. We provide empirical evidence
that the global behavior of the complex RG flows can be
determined by simply calculating the complex zeros of the
partition function in the complex coupling plane (Fisher’s
zeros) and related singular points. In the large volume
limit, we argue that the basin of attraction of the strongly

coupled (confining) fixed point is delimited by Fisher’s
zeros. The complex conjugated pair of zeros closest to
the real axis can be seen as a ‘‘gate’’ controlling the
complex flows between the weakly and strongly coupled
fixed points. Monitoring the position of these zeros as the
volume increases can provide a way to decide if the theory
is confining or not. For SUð2Þ pure gauge theory this is a
challenging task [5] especially when we increase the vol-
ume. In the following, we report the first numerically stable
calculations of Fisher zeros on a 64 lattice. Details will be
provided elsewhere [6].
In the study of flows or differential equations, it is often

enlightening to consider their complexification. Recent RG
studies [7] discuss the loss of conformal invariance and
disappearance of fixed points in the complex plane when a
parameter is varied beyond some critical value. In addition,
analytic continuation of a theory into the complex coupling
plane is an essential tool to understand the large-order
behavior of perturbative series. It has been used to explain
why perturbative series have a zero radius of convergence
[8] and to determine accurately the growth of the pertur-
bative series [9,10]. For lattice models with compact in-
tegration [11,12], there is a change but not a loss of vacuum
when the real positive coupling g20 changes sign. This may

explain the apparent power growth behavior of weak cou-
pling series obtained with stochastic perturbation theory
[13–15]. A complex RG perspective on these questions
would be very desirable.
In the following, we consider three types of models

known for their absence of phase transition: the nonlinear
OðNÞ sigma model on a square lattice in the large-N limit,
the two-dimensional Ising hierarchical model, and SUð2Þ
lattice gauge theory in four dimensions with a Wilson
action. We use generic notation which can be used inter-
changeably for the three models. � denotes the inverse
’t Hooft coupling 1=ðg20NÞ for the OðNÞ model, the inverse

temperature for the hierarchical model, and 4=g20 for the

SUð2Þ gauge theory. These three models are discussed in
more detail in Refs. [12,16,17] respectively. We use the
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notation a for the lattice spacing, mG for the mass gap and
M � amG its dimensionless form. � should not be con-
fused with the Callan-Symanzik � function which will be
denoted �CS. In general, M2@�=@M2 / �CS=g

3
0, with a

model dependent positive constant of proportionality. For
asymptotically free theories, in the small a limit we have

�ðM2Þ ’ Aþ B lnð1=M2Þ (1)

with B> 0, proportional to minus the first coefficient of
the �CS function. We will also use the generic spectral
decomposition [17,18] of the partition function:

Z ¼
Z Smax

0
dSnðSÞe��S; (2)

where S is the total action (or energy). We call nðSÞ the
density of states. We use the notation lnðnðSÞÞ=N �
fðS=N Þ with N the number of lattice sites for spin
models and the number of plaquettes for gauge models.

Simple one-dimensional RG flows can be generated
when the � dependence on the lattice spacing a at fixed
physical mass gap mG is known. Beyond the celebrated
asymptotic scaling regime of Eq. (1), local polynomial
parametrizations of lnðM2Þ are known in SUð3Þ lattice
gauge theory [19], but their analytical continuation is
only valid in a small region. For theOðNÞmodels at infinite
volume and infinite N, we have a close form expression
[20] valid for any real positive M2:

�ðM2Þ ¼
Z �

��

Z �

��

d2k

ð2�Þ2
1

P2ðk1; k2Þ þM2;
(3)

with P2ðk1; k2Þ � 2ð2� cosðk1Þ � cosðk2ÞÞ. In the limit of
smallM2, we have the asymptotic form of Eq. (1) with B ¼
1=ð4�Þ.

The mapping can be analytically continued to the cut
complex M2 plane with a cut running from �8 to 0. The
image of this cut plane in the complex � plane is an
asymptotically cross-shaped region partially shown in
Fig. 1. In Ref. [12] it was argued that the Fisher’s zeros
should lay outside of the this crossed shaped region.
Complex RG flows can be obtained by increasing the
lattice spacing (kept real) with a fixed complex mG.
Figure 1 shows the RG flows for 11 initial values of M2

taken on a small circle around the origin and then multi-
plied repeatedly by a factor 2. The flows stay inside the
image of the ½�8; 0� cut. By taking initial values very close
to the real negative axis, it is possible to follow closely this
boundary.

Lattice simulations are performed at finite volume and it
is important to understand the modification of the simple
flow picture provided above when the volume is finite. For
L� L lattices with periodic boundary conditions, the in-
tegral in Eq. (3) is replaced by an average over the L2

momenta coming in units of 2�=L. The mapping �ðM2Þ
becomes a rational function and its inversion requires a
Riemann surface with a number of sheets scaling like L2.

The cuts (in the � plane) end at the images �ðM2
singÞ of

singular pointsM2
sing such that �

0ðM2
singÞ ¼ 0. These values

of � can be interpreted as the complex zeros of the non-
perturbative �CS function [12]. If we consider the image of
a straight line coming out of the origin in the complex M2

plane and making an angle � with the positive real axis, its
image may wrap around a certain number of the �ðM2

singÞ.
A detailed analysis [21] shows that it only occurs when
j�j>�=2. The complex conjugate images with the small-
est � play an essential role in the understanding of the
global properties of the flows. In practice, their � is very
close to��=2 and we call them the closest singular points
(CSP). The situation is illustrated in the bottom part of
Fig. 1 for L ¼ 32. The procedure is identical to the infinite

FIG. 1 (color online). Top: Infinite L RG flows (arrows). The
blending small crosses (blue online) are the � images of two
lines of points located very close above and below the ½�8; 0�
cut. Bottom: same procedure and initial conditions but for L ¼
32; the crosses are the images of the singular points. The image
of the CSP described in the text appear as two large filled circles.

PRL 104, 251601 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
25 JUNE 2010

251601-2



volume case, but some results are strikingly different. For
very small jM2j, the pole at 0 in the finite volume sum that
replaces the integral in Eq. (3), dominates and replaces the
logarithmic divergence at infinite volume. Consequently,
the image of a small circle around the origin in the M2

plane is a large circle in the� plane. There are 288 singular
points. The flows corresponding to j�j<�=2 go between
the images of the CSP (large filled circles) from the right.
The flows corresponding to j�j>�=2 go between the
images of the CSP from the left, wrap around the images
of the CSP, and eventually end up at zero. In summary, the
global properties of the RG flows are controlled by the
CSP. In the large volume limit, the real part of the image of
the CSP goes to infinity and the imaginary part stabilizes at
ð�=2Þð1=ð4�ÞÞ ¼ 1=8 as can be inferred from Eq. (1). This
stabilization implies that the complex RG flows on the
positive real axis and the neighboring complex flows can
reach the strongly coupled fixed point without obstruction.

Complex RG flows can also be calculated by extending
two-lattice matching methods to the case of complex �. In
the following, we use a slightly modified version of
Refs. [22,23]. The idea is to consider large distance ob-
servables that can be calculated on lattices with different
sizes in lattice spacing units but equal physical sizes. The
large distance behavior is probed by calculating the corre-
lations between two large neighbor blocks B and NB of
physical size jBj. The ratio of the block volume to the total
physical volume V is the same for both lattices. In order to
bypass the determination of the field rescaling, we consider
the ratio

Rð�; V=aDÞ � hðPx2B
~�xÞð

P
y2NB

~�yÞi�
hðPx2B

~�xÞð
P

y2B
~�yÞi�

: (4)

In Ref. [23], the whole ratio was averaged. Here, we use
blocked observables that depend linearly on the original
variables, the average at complex � can be defined by
reweighting configurations at real �. A discrete RG trans-
formation mapping � into �0 while the lattice spacing
changes from a to ba is obtained by requiring the matching
Rð�;V=aDÞ ¼ Rð�0; V=ðbaÞDÞ. When � is complex, there
are typically many �0. In special cases, the matching
condition reduces to polynomial equations in which the
multivaluedness can be addressed systematically. For prac-
tical purposes, one would like to be able to use Newton’s
method to construct the RG flows. This works if there is
only one �0 solution close to �. For the two spin models
considered here, we found out that unless the RG flow gets
near the Fisher’s zeros, the distance j�� �0j singles out
one �0 unambiguously. The situation is illustrated for the
hierarchical model in Fig. 2. We required Rð�; 25Þ ¼
Rð�0; 24Þ using the exactly calculable probability distribu-
tion for blocks covering half the volume. Twenty-nine
initial � were chosen on a line with constant Re� ¼ 5.
The eight trajectories passing by the Fisher’s zeros led to

ambiguous choices of�0 and are not displayed. More detail
on this method will be provided in Refs. [21,24].
We now introduce a generic method to restrict the region

where Fisher’s zeros can be found. Using the density of
states, it is clear that the contributions at fixed � should
come from a small region near the saddle point.

nðSÞe��N s ¼ eN ðfðsÞ��sÞ ¼ eN ðfðs0Þþð1=2Þf00ðs0Þðs�s0Þ2þ...Þ;
(5)

with s ¼ S=N and f0ðs0Þ ¼ �. As long as Ref00ðs0Þ< 0,
the distribution becomes Gaussian in the infinite volume
because if we defineN f00ðs0Þðs� s0Þ2 � y2 as the normal
variable, higher order in s� s0 in the exponential will be
suppressed by negative powers of N . Gaussian distribu-
tions have no complex zeros [25], and consequently, we
could look for the level curve Ref00ðs0Þ ¼ 0 as the bound-
ary of the region where Fisher’s zeros may appear. In Fig. 1
of Ref. [26] the regions where Ref00ðs0Þ � 0 are depicted
as narrow ‘‘tongues’’ coming vertically toward the real
axis. In the Uð1Þ case, a conjugate pair pinches the real
axis, but for SUð2Þ a finite gap remains present. This
suggests that the Fisher’s zeros of these models should
appear on approximately vertical linear structures. For
SUð2Þ, the imaginary part of Fisher’s are too large to use
simple reweighting methods [5]. By using Chebyshev in-
terpolation for fðsÞ and monitoring the numerical stability
of the integrals with the residue theorem [12], it is possible
to obtain reasonably stable results [6] that confirm this
picture (see Fig. 3). Unlike the Uð1Þ case, the imaginary
part of the lowest zeros does not decrease as the volume
increases, but their linear density increases at a rate com-
patible with L�4.

FIG. 2 (color online). Unambiguous RG flows for the hier-
archical model in the complex � plane obtained by the two-
lattice method. The crosses and open boxes are at the Fishers
zeros for 24 and 25 sites.
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For OðNÞ models, it is possible to write close form
expressions of the partition function in the approximation
(justified in the large-N limit) where we only keep the zero

mode of the auxiliary field enforcing the constraint ~�: ~� ¼
1. For L andN not too large, it is possible to use the residue
theorem to calculate exactly the integral. From this exact
expression, one can calculate the Fisher’s zero and the
density of states which happens to be piecewise polyno-
mial. Using the exact form of the density of state, we can
calculate the zeros of f00. As in the case of the SUð2Þ gauge
theory, approximately vertical lines of zeros appear above
the singular points of the two mappings discussed above.
Their linear density increases at a rate compatible with
L�4 [21].

In summary, we have shown with examples that RG
flows in one real coupling can be extended to the complex
coupling plane. As the volume increases, the stabilization
of the Fisher’s zeros away from the real axis allows the
complex flows to reach the strongly coupled fixed point.
Two-lattice matching methods can be extended to the
complex plane by reweighting existing gauge or spin con-
figurations (as long as the imaginary part of � is not too
large). We plan to apply this method to decide if extensions
of QCD confine or not.
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