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The purpose of the current Letter is to give some relations between gravitational lensing in the strong-

deflection limit and the frequencies of the quasinormal modes of spherically symmetric, asymptotically

flat black holes. On the one side, the relations obtained can give a physical interpretation of the strong-

deflection limit parameters. On the other side, they also give an alternative method for the measurement of

the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. They

could be applied to the localization of the sources of gravitational waves and could tell us what

frequencies of the gravitational waves we could expect from a black hole acting simultaneously as a

gravitational lens and a source of gravitational waves.
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Black holes are extreme objects that are predicted to
occur in strong fields by many gravitational theories in-
cluding general relativity (GR). The observation of astro-
physical objects with enormous masses gives hope that
black holes really exist. But for a better determination of
the particular properties of these objects and for a more
definitive answer to the question of whether they are really
black holes, a more thorough study is needed.

Information about the physical properties of different
compact objects can be obtained through the emission of
gravitational waves and the characteristic frequencies of
ringing, namely, the frequencies of the quasinormal modes
(QNMs) [1–3]. The QNMs would allow us to distinguish
between different compact objects—black holes, stars, to
distinguish between different theories of gravity since they
predict different characteristic spectra, to determine the
global asymptotic charges like mass, charge, and angular
momentum of the observed black holes and so on [4].

The usual method used to calculate the QNM frequen-
cies is to consider a classical scattering problem in a black
hole spacetime. The QNMs correspond to the resonances
of the scattering problem when at spacial infinity there are
purely outgoing waves and at the event horizon purely
ingoing waves. There are also alternative approaches. In
the geometric-optics (eikonal) limit Mashhoon [5] sug-
gested an analytical method for the calculation of the
QNMs. In that approximation gravitational waves are
treated as massless particles propagating along the last
null unstable, circular orbit (an alternative approach, based
on the complex angular momentum method, for the study
of resonant scattering in black hole physics is to interpret
the gravitational radiation emitted from black holes in
many processes as surface waves localized close to the
last null unstable, circular orbit [6–9]) and slowly leaking

out to infinity [10–13]. The real part of the QNMs can be
related to the angular velocity of the last null circular orbit
and the imaginary part is related to the Lyapunov exponent
that determines the instability time scale of the orbit [14].
The null geodesics are related also to the propagation of

light rays and in the case when the light rays are restricted
to a plane the last null unstable, circular orbit is simply the
intersection of the photon sphere with the plane of propa-
gation. Hence, it is natural to expect the presence of the
connection between the two phenomena—the gravitational
lensing and emission of gravitational waves. (For a nice,
recent and pedagogical review on black-hole gravitational
lensing we refer the reader to [15]. There one can also find
a comprehensive discussion on the observational perspec-
tives.) A guess for a possible connection between these two
phenomena has been previously made by Decanini and
Folacci [8], though from a different aspect. In the current
Letter some simple relations between QNMs and the gravi-
tational lensing are presented and a method for the mea-
surement of the frequencies of the QNMs of spherically
symmetric black holes through gravitational lensing is
proposed.
In [16] Bozza gives a detailed derivation of the equation

for the deflection angle for the case when the lens is
spherically symmetric. He uses the following ansatz for
the line element of a generic spherically symmetric space-
time [16]

ds2 ¼ AðxÞdt2 � BðxÞdx2 � CðxÞðd�2 þ sin2�d’2Þ: (1)

where the metric functions should have the proper asymp-
totics
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in order to correctly match the weak gravitational field far
from the lensing object.

The spherical symmetry allows us to restrict our consid-
erations to propagation of light rays in a plane—say the
equatorial plane. Then on the last null circular orbit the
following relation holds:

C0ðxÞ
CðxÞ ¼ A0ðxÞ

AðxÞ : (3)

In the general case Eq. (3) admits more than one solution.
The largest, positive root of Eq. (3) gives the radius of the
photon sphere xm. (Here and below we will use the sub-
script m to denote quantities that are evaluated on the
photon sphere. For a more general definition of the photon
sphere, we refer the reader to [17]). A, B, C, A0 and C0 must
be positive for x > xm. When restricted to the equatorial
plane the photon sphere gives the last circular, null orbit,
which is unstable.

Bozza obtains the following equation for the deflection
angle

�ð�Þ ¼ � �a ln

�
�DOL

um
� 1

�
þ �b; (4)

where � is the angular position of the light source, � is the
deflection angle and DOL is the distance between the ob-
server and the lens. The coefficients �a, �b and the impact
parameter um can be expressed with the metric functions
evaluated on the photon sphere in the following way:

�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2AmBm

C00
mAm � CmA

00
m

s
(5)

�b ¼ ��þ bR þ �a ln

�
Cmð1� AmÞ2ðC00

mAm � CmA
00
mÞ

A3
mC

02
m

�
;

(6)

um ¼
ffiffiffiffiffiffiffi
Cm

Am

s
: (7)

The parameter bR is different for different spacetimes and
can be obtained through a straightforward calculation. The
expression for bR can be found in [16]. Prime ð� � �Þ0
denotes the derivative with respect to the radial coordinate
x. The strong field lens parameters �a and �b carry informa-
tion about the nature of the lens. Observational data for
them could allow us to distinguish between different black
holes, for example, a Schwarzschild and a Reissner-
Nordström black hole. (For more information we refer
the reader to [16], for example.) The physical meaning of
�a and �b, however, remains somehow obscure.

Let us now consider the method for the calculation of the
frequencies of the QNMs through the study of null geo-
desics. In the eikonal limit (subdominant corrections to the
eikonal approximation can be found in [18]) they can be
related to the parameters of the last circular, null geodesic
in the following way:

!QNM ¼ �ml� iðnþ 1=2Þj�j: (8)

Here n and l are, respectively, the number of the overtone
and the angular momentum of the perturbation. The real
part of the frequencies is determined by the angular veloc-
ity of the last circular null geodesic �m. The parameter �
which appears in the imaginary part is the Lyapunov ex-
ponent which determines the instability time scale of the
orbit. For the Lyapunov exponent in [14] the following
formula has been obtained: [the formulas are expressed in
terms of the chosen ansatz for the metric Eq. (1), see
formulas (40) and (36) in [14]]

� ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AmC

00
m � A00

mCm

2BmCm

s
: (9)

This expression is reminiscent of the expression (5) for the
lens parameter �a. (Here and below we restore the speed of
light c.) Using the equation for the photon sphere (3) and
the equation for the impact parameter (7), eventually we
arrive to the following simple relation

� ¼ c

um �a
: (10)

Another simple observation allows us to relate the co-
ordinate angular velocity with the impact parameter of the
lens

�m ¼ c

ffiffiffiffiffiffiffi
Am

Cm

s
¼ c

um
: (11)

This relation can be obtained through comparison of the
formula for the angular velocity of null geodesics (e.g.,
formula (37) in the paper of Cardoso et al. [14]) and
formula (7). Furthermore, combining (10) and (11) we find

�a ¼ �m

�
: (12)

A relation between the instability time scale of the orbits
and the decrease of the brightness of the images with
increasing n can also be obtained. Let us consider the ratio
between the magnifications of two consecutive images.
Taking formula (84) from the paper of Bozza [16] for
the magnification in the limit of large n and formula (10)
we can obtain

ln

�
�nþ1

�n

�
¼ � 2�

�a
¼ � 2�um�

c
: (13)

On the one side, the simple relations (10) and (11) allow us
to give an alternative physical interpretation of the strong
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field lens parameter �a and the impact parameter. On the
other side, however, these relations give us a possible
method to measure the real and imaginary parts of the
QNM frequencies of different objects since there is good
hope that the strong field lens parameters could be deter-
mined in future experiments [15,19]. Equations (10) and
(11) allow us to relate � and �m to observable quantities,
in particular, the magnitudes of the images, the distance
between the observer and the lens DOL, and the angular
position of the image that is closest to the black-hole �1
(minimal impact angle). The lens parameter �a can be
determined from the flux ratio ~r

�a ¼ 2�

ln~r
; (14)

defined as

~r ¼ �1P1
n¼2 �n

: (15)

Here�1 and�n are, respectively, the magnifications of the
first image and the nth image. The difference between the
magnitude of the outermost relativistic image and magni-
tude of the sum of all the other relativistic images rm is
related to the flux ratio ~r in the following way: rm ¼
2:5Log~r. The impact parameter can be obtained from

um ¼ DOL�1: (16)

So, expressed in terms of the observables

� ¼ c ln~r

2�DOL�1
; (17)

�m ¼ c

DOL�1
: (18)

Gravitational lensing in the strong field regime is also a
candidate for a model independent method for the mea-
surement of the distance to the observed black holes and
other massive objects which act as gravitational lenses.
The method presented in [19] is based on the measurement
of time delays between consecutive relativistic images.
According to that method the distance between the ob-
server and the lens DOL can be determined from the ratio

4T2;1

�1
¼ 2�

DOL

c
; (19)

where 4T2;1 is the time delay between the emergence of

the first and the second relativistic images and c is the
speed of light. ExpressingDOL from the above formula and
substituting it back in (10) and (11) we obtain

� ¼ ln~r

4T2;1

(20)

and

�m ¼ 2�

4T2;1

: (21)

The combination of Eqs. (20) and (21), or alternatively
(12) and (14), gives a simple relation between the angular
velocity of the last circular null geodesic �m and the
Lyaounov exponent �

�m ¼ 2�

ln~r
�: (22)

Several objects in different galaxies for which it seems
likely that the time delays could be measured in the near
future are listed in [19].
In conclusion, let us discuss the possible application of

the relations between the parameters of the gravitational
lens in the strong-deflection regime and the quasinormal
modes of static, spherically symmetric black holes in the
eikonal approximation presented in the current Letter. One
of the considerable difficulties in future observations of
gravitational waves would be the localization of the
sources. The Laser Interferometer Space Antenna
(LISA), for example, is an all-sky monitor. According to
the estimations, if we try to localize the hosting galaxy of
massive black hole(s), which is a powerful source of
gravitational waves, the typical LISA error box would
contain several hundreds of galaxy clusters which means
more than 105 galaxies [20]. Then, the patch of the sky
restricted by LISA has to be additionally examined with
optical or radio telescopes for more precise localization of
the source. In that case, the possibility to obtain the char-
acteristic frequencies of emission of gravitational waves of
the observed objects through gravitational lensing would
be indispensable. Another possible application of the found
relations is that if a black hole acts simultaneously as a
gravitational lens and a source of gravitational waves, the
data from the optical and radio observations could tell us
what frequencies of the gravitational waves (namely the
QNMs) to expect.
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[7] Y. Décanini, A. Folacci, and B. Jensen, Phys. Rev. D 67,

124017 (2003).
[8] Y. Decanini and A. Folacci, Phys. Rev. D 81, 024031

(2010).
[9] Y. Decanini, A. Folacci, and B. Raffaelli, Phys. Rev. D 81,

104039 2010.
[10] W.H. Press, Astrophys. J. 170, L105 (1971).
[11] C. J. Goebel, Astrophys. J. 172, L95 (1972).
[12] V. Ferrari and B. Mashhoon, Phys. Rev. D 30, 295

(1984).

[13] E. Berti and K.D. Kokkotas, Phys. Rev. D 71, 124008
(2005).

[14] V. Cardoso, A. S. Miranda, E. Berti, H. Witek, and V. T.
Zanchin, Phys. Rev. D 79, 064016 (2009).

[15] V. Bozza, arXiv:0911.2187.
[16] V. Bozza, Phys. Rev. D 66, 103001 (2002).
[17] C.-M. Claudel, K. S. Virbhadra, and G. F. R. Ellis, J. Math.

Phys. (N.Y.) 42, 818 (2001).
[18] S. Dolan and A. Ottewill, Classical Quantum Gravity 26,

225003 (2009).
[19] V. Bozza and L. Mancini, Gen. Relativ. Gravit. 36, 435

(2004).
[20] A. Vecchio, Phys. Rev. D 70, 042001 (2004).

PRL 104, 251103 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
25 JUNE 2010

251103-4

http://dx.doi.org/10.1103/PhysRevD.31.290
http://dx.doi.org/10.1088/0264-9381/11/12/014
http://dx.doi.org/10.1088/0264-9381/11/12/014
http://dx.doi.org/10.1103/PhysRevD.67.124017
http://dx.doi.org/10.1103/PhysRevD.67.124017
http://dx.doi.org/10.1103/PhysRevD.81.024031
http://dx.doi.org/10.1103/PhysRevD.81.024031
http://dx.doi.org/10.1103/PhysRevD.81.104039
http://dx.doi.org/10.1103/PhysRevD.81.104039
http://dx.doi.org/10.1086/180849
http://dx.doi.org/10.1086/180898
http://dx.doi.org/10.1103/PhysRevD.30.295
http://dx.doi.org/10.1103/PhysRevD.30.295
http://dx.doi.org/10.1103/PhysRevD.71.124008
http://dx.doi.org/10.1103/PhysRevD.71.124008
http://dx.doi.org/10.1103/PhysRevD.79.064016
http://arXiv.org/abs/0911.2187
http://dx.doi.org/10.1103/PhysRevD.66.103001
http://dx.doi.org/10.1063/1.1308507
http://dx.doi.org/10.1063/1.1308507
http://dx.doi.org/10.1088/0264-9381/26/22/225003
http://dx.doi.org/10.1088/0264-9381/26/22/225003
http://dx.doi.org/10.1023/B:GERG.0000010486.58026.4f
http://dx.doi.org/10.1023/B:GERG.0000010486.58026.4f
http://dx.doi.org/10.1103/PhysRevD.70.042001

