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We build a quantum algorithm which uses the Grover quantum search procedure in order to sample the

exact equilibrium distribution of a wide range of classical statistical mechanics systems. The algorithm is

based on recently developed exact Monte Carlo sampling methods, and yields a polynomial gain

compared to classical procedures.
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The possibility of using quantum mechanics to treat
information and perform computation has attracted great
interest in the recent past (see, e.g., [1] for a review).
Quantum algorithms have been devised, which solve com-
putational problems faster than their classical counterpart,
such as the factorization algorithm of Shor [2]. However,
relatively few problems have been identified which are
amenable to quantum speedup. While many works have
proposed methods to simulate quantum systems using a
quantum processor (see, e.g., [1] and references therein),
fewer have tried to build quantum algorithms to speed up
classical physical problems [3]. In particular, statistical
physics is the source of many computational problems
which have led to great efforts of several communities to
develop efficient classical algorithms. For example, the
goal of many Monte Carlo algorithms is to sample a
configuration set� from an equilibrium probability distri-
bution � [4]. It is therefore important to explore the
possibilities to use quantum computers in order to speed
up such problems. Some quantum algorithms have been
proposed to approximate the partition functions of certain
statistical physics models [5], or even obtain it exactly in
very specific cases [6]. In the very recent past, many works
have focused on quantum algorithms implementing clas-
sical Markov Chain Monte Carlo (MCMC) methods
through quantum walks [7–10]. In general, these methods
give a quadratic gain compared to classical simulations.

Here we consider another type of MCMC algorithm
recently developed, the ‘‘coupling from the past’’ (CFTP)
procedure of Propp and Wilson, which leads in finite time
to the exact equilibrium distribution [11]. We propose a
quantum algorithm combining this CFTP procedure and
the quantum search procedure of Grover [12], enabling a
quadratic speedup over the classical algorithm, without
using quantum walks. Our method enables to sample the
exact equilibrium distribution in finite time for a wide class
of systems, while previous algorithms either provide an
approximate version whose error has to be controlled [5,7–
10], or are restricted to specific models [6]. Our algorithm
is also rather simple compared to these other methods,
while yielding a comparable polynomial gain.

One of the key issues in classical MCMC algorithms is
that they must be iterated sufficiently many times so that
the final state is a ‘‘typical’’ configuration, in other words
has a probability distribution close to the stationary one, �,
independently of the initial state. In order to get close to the
correct distribution �, one should be able to know when
sufficient convergence is achieved. In a few particular
cases, it is possible to calculate analytically the relaxation
time of the algorithm, i.e., the typical time needed to reach
stationarity. But in practice, estimating or bounding relaxa-
tion times is a notoriously difficult mathematical problem
[13–18] and one has to rely on heuristic arguments to infer
that stationarity has approximately been reached.
An elegant alternative way to circumvent this issue has

been proposed by Propp and Wilson in 1996 [11,19]. As
detailed below, the CFTP technique is a reformulation of
the MCMC procedure that generates exact samples, in the
sense that they are exactly distributed according to the
stationary distribution �. Thus successive calls of the
algorithm generate totally uncorrelated samples (see be-
low). The basic idea is to run the Markov chain ‘‘from the
past,’’ from a time �t up to t ¼ 0. Now suppose that there
exists a time�T such that at t ¼ 0 all states have coalesced
(or ‘‘coupled’’); i.e., their evolution through the algorithm
has led to the same state xc of the configuration set�. Then
any initial configuration at t ¼ �1 would lead to the same
state xc, which can thus be seen as the result of an infinite
time simulation. The state xc is consequently distributed
exactly according to the stationary distribution. The diffi-
culty of the procedure dwells in the necessity to track the
evolution of the whole set �, whereas in standard
Monte Carlo sampling only one state of � is tracked.
When stored in a computer memory, the configuration

set is always finite. Thus we will consider a discrete time
Markov chain [20] on a finite configuration set � of
cardinalityN. Our quantum algorithm consists in replacing
the classical evolution of the N states of � by a quantum
evolution of a single quantum state, namely, the superpo-
sition of the N ones, 1ffiffiffi

N
p P

xjxi; then the Grover quantum

search procedure is applied on top of this quantum evolu-
tion to find efficiently if the system has coalesced.
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Let us now detail the classical CFTP algorithm. Without
loss of generality, a state x 2 � (with� of cardinalN) can
be coded by n classical bits bi ¼ 0, 1 as x ¼ b1; . . . ; bn and
N � 2n. Let P be the transition matrix of the Markov
chain. Its elements are the transition probabilities Pðx; yÞ,
with Pðx; yÞ � 0 being the conditional probability that the
chain is in the state x at time tþ 1 given that it was in the
state y at time t. The chain is supposed to be reversible,
which means that it satisfies the detailed balance condition
[4,20]: there exists a probability distribution on�, denoted
by �, such that �ðxÞPðy; xÞ ¼ �ðyÞPðx; yÞ for all states x
and y. This condition ensures that � is a stationary distri-
bution. We assume that � exists and is unique, in which
case it coincides with the equilibrium distribution (see [20]
for further details). If Pðx; Tjx0; 0Þ is the probability that
the chain is in the state x at time T given that it was in the
state x0 at t ¼ 0, then [20]

lim
T!1Pðx; Tjx0; 0Þ ¼ �ðxÞ: (1)

This result is central in traditional Monte Carlo sam-
pling: if the algorithm (the Markov chain) is iterated long
enough, then the probability distribution of its final state is
close to the stationary one.

A Monte Carlo step at time t can be seen as a map ft:
� ! �, determined by a randomly generated parameter
�t as ftð�Þ ¼ �ð�; �tÞ. Thus once the random numbers �t

are set, each step of the algorithm is completely determi-
nistic. If T is the duration (number of steps), then the
algorithm is entirely coded by the map FT ¼ fT � . . . �
f2 � f1. A standard way of performing Monte Carlo sam-
pling consists in following the dynamics of a single initial
state during a sufficiently large time and averaging a
physical observable O over time iterates. In this case, the
statistical error on the numerical measure of hOi can be
estimated using the relaxation time �O of O. Indeed, the
algorithm behaves as if roughly T=�O independent realiza-

tions were measured, leading to an error ErrO ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�O=T

p
�O, where T is the total simulation duration and

�O the standard deviation of O [4]. In principle, �O can
itself be numerically measured through the correlation
function of O, COðsÞ ¼ hOðtþ sÞOðtÞit � hOi2 /
expð�s=�OÞ. However, COðsÞ is itself an equilibrium
quantity that can be measured only if the system has
reached stationarity, and the measured �O may be only
representative of a long transient regime instead of equi-
librium. This is particularly critical in disordered, glassy
systems where it is impossible to ascertain whether equi-
librium has indeed been reached, because the system is
likely to get trapped for a long time in the many metastable
states [21–23].

Instead of iterating the states in the future as in the
traditional method explained just above, the CFTP proce-
dure goes from the past: we suppose that we have at our
disposal a sequence of random numbers ��1; ��2; . . . be-
fore starting the algorithm. The CFTP algorithm constructs
the iterates of all the states x 2 � until they have all

reached the same state (‘‘coalescence’’). The essential
subroutine of the algorithm [let us call it �ðTÞ] calculates
the N computational paths from time �T up to time 0
through the mapGT ¼ f�1 � . . . � f�T and tests at the end
whether all histories have coalesced to the same state. If the
coalescence test fails, the same procedure is started again
from an earlier time. The algorithm reads:
T ¼ 0
repeat
T ¼ T þ�T (go �T steps back in time)
�ðTÞ (follow all N paths and test coalescence)
until coalescence is achieved
At coalescence, T is such that one has GTðxÞ ¼ xc for

any x 2 �. Thus for any t0 � �T, G�t0 ðxÞ ¼ xc. In par-
ticular, limt0!�1G�t0 ðxÞ ¼ xc. Therefore xc can be seen as
the result of a Monte Carlo algorithm of infinite duration
and is exactly distributed according to �. It is proven that
with probability 1 the algorithm returns a value in finite
time [11]. Successive calls of the algorithm return totally
uncorrelated samples, and hOi is now calculated by aver-
aging over realizations instead of time. The statistical error

is now perfectly controlled: ErrO¼�Offiffiffi
R

p where R is the num-

ber of realizations (independent calls of the algorithm).
The CFTP can be applied to any MCMC problem [24].

In specific instances, it is sufficient to follow the history of
a small subset of the N states. This is the case, e.g., if a
partial order on � makes it sufficient to follow only
extremal configurations. Unfortunately, in general the N
states should be followed in parallel, which represents an
often prohibitive computational cost. We will propose
below a quantum algorithm reducing this cost.
We denote the average coalescence time of the algo-

rithm by �̂. To what extent is it related to relaxation times
�O as discussed above? In principle, �O depends on the
observable O. But �O is bounded above by (and in general
on the same order of magnitude as) the relaxation time of
the Markov chain, denoted by � [25]. This latter time
measures the speed of convergence of the probability
distribution to � and is equal to the inverse of the first
gap of the transition matrix P [17,18]. Furthermore, � is
itself bounded above by (and in general on the same order
of magnitude as) �̂ [17], which makes CFTP-type tech-
niques so useful to estimate convergence rates, even on
theoretical grounds. All in all, generally speaking, �̂� ��
�O. Running the algorithm yields an accurate estimate of �̂
and thus of relaxation times.
Let us now turn to our quantum algorithm. The essential

subroutine �ðTÞ of the classical CFTP algorithm follows
the history of the N states x 2 � and tests coalescence of
all states. The quantum algorithm will start from a register
holding the N initial states jxi, 0 � x � N � 1, coded on n
qubits, and follow each history in parallel. A second regis-
ter holds the results of the successive application of the
maps ft. Calculation of the iterates is done with the help of
ancilla registers. To illustrate the computational scheme,
we will first specialize our presentation to the case of the
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Ising model with Glauber dynamics. In this case the ob-
servableO could be, e.g., the magnetization. Starting from
the totally separable state, Hadamard gates are applied to
each qubit to put the register into an equal superposition of
all states. Suppose that after t iterations the quantum state
reads

XN�1

x¼0

jxijHt;TðxÞij0ij0ij0i; (2)

where Ht;T ¼ f�Tþt�1 � . . . � f�T . The next Monte Carlo

step consists in flipping a certain spin i with some proba-
bility function of the energy difference �E between con-
figuration Ht;TðxÞ and the same configuration with spin i
flipped. This spin i may be chosen at random; alternatively
one can consider each spin one after another (sequential
sweep). The spin is flipped with probability p ¼
½1þ expð��EÞ��1 or left unchanged with probability 1�
p. Here � is the inverse temperature. In terms of quantum
registers, one has to evaluate the energies associated with

configurations jyi ¼ jHt;TðxÞi and jyðiÞi ¼ XðiÞjyi (where

the Pauli matrix XðiÞ flips spin i), by arithmetic operations
controlled by the second register. The probability p is then
calculated on the third register and the random number �t,
uniformly distributed on [0,1], is put on the fourth register.
The sign of �t � p is computed, and the one-qubit fifth
register jsi is set to j0i if �� p � 0 and j1i if �� p < 0.

The bit-flip matrix XðiÞ is applied, controlled by jsi. The
last three registers are then reset to j0i in the usual way by
running the operations backwards. The circuit in Fig. 1
shows one step of the iteration algorithm before reset of
these registers.

After T steps the quantum state reads

XN�1

x¼0

jxijGTðxÞi: (3)

If T is such that all GTðxÞ are equal then the histories have
coalesced and a measure of the second register yields an
element in � distributed exactly according to the station-
ary distribution �. Since all iterations are performed in
parallel this step requires an average time �̂. The crucial
point in the CFTP algorithm is that the exact distribution is
obtained if and only if all GTðxÞ are equal. Consider, for
instance, the case where the GTðxÞ take two different

values, say y1 and y2. Then one might detect that the states
have not coalesced onto a unique value as soon as one
obtains different results after measuring the second register
upon repeated runs of the procedure (with the same random
numbers). If the states have not coalesced then the process
has to be restarted from an earlier time. Obviously, only in
the case where the probabilities of measuring y1 and y2 are
both high will different outcomes be obtained quickly upon
measurement. In the extreme case where there is a unique
x0 2 � such that GTðx0Þ ¼ y2 while all other x verify
GTðxÞ ¼ y1, almost all measurements of the second regis-
ter will give y1, and the state will be almost indistinguish-
able from the state where all GTðxÞ are equal. Since the
CFTP algorithm requires to distinguish these cases, the
idea is to use the Grover algorithm to amplify the proba-
bility amplitude of the unknown noncoalesced state jx0i, so
that it can be detected. If we first measure the second
register and consistently get the value y1 then our aim is
to detect whether all x verify GTðxÞ ¼ y1 or not. Since we
know the value of y1, we can attach to our quantum state a
one-qubit register in the state jzi ¼ 1ffiffi

2
p ðj0i � j1iÞ. We then

perform the operation jxijGTðxÞijzi � jxijGTðxÞijzþ
’ðxÞi, where ’ðxÞ ¼ 0 if GTðxÞ ¼ y1 and ’ðxÞ ¼ 1 other-
wise, and erase all the registers but the first one. This gives
a phase ei� to states which do not verify GTðxÞ ¼ y1. One
can thus apply Grover iterations to magnify the amplitude
of the noncoalesced states. The whole sequence above cor-
responds to one ‘‘oracle’’ step of the Grover iteration, and
has to be performed using the same random numbers �t.
What is the speedup on �ðTÞ obtained by this proce-

dure? Suppose that after T time steps M states x are not
coalesced. We consider the case M � N, since otherwise
noncoalescence is easily detected by a few measurements

or even classically. Then Oð ffiffiffiffiffiffiffiffiffiffiffi
N=M

p Þ Grover iterations are
required (even though M is unknown [26]), each using
OðTÞ operations. The total number of quantum gates in

this case is �T
ffiffiffiffiffiffiffiffiffiffiffi
N=M

p
. Note that, as the random numbers

can be generated classically once and for all beforehand,
their computational cost is �T, thus negligible.
As explained above, the complete algorithm proceeds by

performing a certain number of calls of �ðTÞ until coales-
cence. Let us evaluate the speedup of the quantum algo-
rithm for �ðTÞ compared to the classical procedure. We
consider that preliminary runs enable quickly to estimate a
suitable �T & �̂ which is gradually improved. To iterate
classically the Monte Carlo steps on one computational
path will cost a certain number of computational opera-
tions gðNÞ. Let us first suppose that the dynamics is rapid,
with a short coalescence time �̂ with gðNÞ � lnaN. This
means that the dynamics is polynomial in the physi-
cal system size n. The classical algorithm will need to
follow �N=M computational paths to detect the ones
which did not coalesce. The total cost is �gðNÞN=M�
ðNlnaNÞ=M. In contrast, in the case of the quantum algo-

rithm, Oð ffiffiffiffiffiffiffiffiffiffiffi
N=M

p Þ calls to the oracle are required, and the
oracle performs the N evolutions in parallel in also

FIG. 1. Circuit for one step of the Monte Carlo algorithm. The
unitary operator Up calculates probability p, V� is the operator

implementing the random numbers �, and Ap�� is a modified

adder circuit that gives the sign of p� �.
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�gðNÞ � lnaN operations. The total speedup of the quan-

tum algorithm will be Oð ffiffiffiffiffiffiffiffiffiffiffi
N=M

p Þ, a quadratic gain. If the
dynamics is torpid, with a long coalescence time �̂ with
gðNÞ � Nc, then the classical algorithm requires
�Ncþ1=M operations whereas the quantum one costs

only �Ncþ1=2=
ffiffiffiffiffi
M

p
steps. The relative gain gets smaller

for increasing c, going from quadratic for small c to almost
zero for c ! 1.

The estimates above assume that all initial states, stored
in a n-bit register and coded by all numbers x between 0
and N � 1, are physically admissible. This is the case, e.g.,
for spin problems. However, in many interesting cases one
must inspect a large number of states (N ¼ 2n), of which
only a small subset (Na ¼ Nb, b < 1) are admissible. This
is the case, e.g., for dimer, spanning tree, or hard core
lattice gas problems. In this situation, one can use a modi-
fied version of the above quantum algorithm. Indeed, start-
ing from an equal superposition of the N states, one can
build in the Grover oracle [before each �ðTÞ step] a
subroutine which recognizes the nonadmissible states,
and overwrites in this case the second register with a
known admissible state xa, so that the latter is used as an
initial state in the dynamics. In this case, the quantum

algorithm for M ¼ Oð1Þ still requires �gðNÞ ffiffiffiffi
N

p
steps,

since the Grover search is applied on the whole Hilbert
space of dimension N. To obtain both the equilibrium
distribution and the relaxation time, the classical algorithm
needs �N operations to identify admissible states, and
�gðNÞNb operations to run the CFTP on the admissible
states. If gðNÞ � lnaN, the gain is unchanged. If gðNÞ �
Nc, the gain is maxðcþ b; 1Þ=ðcþ 1=2Þ. The gain is poly-
nomial in all cases except for b < 1=2 and c > 1=2 (very
long relaxation time and very few admissible states).

The algorithm proposed here presents several advan-
tages compared to the recently proposed method for simu-
lating Markov Chain systems [7–10]. These procedures use
quantum walks to approximate the stationary distribution,
in a time typically quadratically faster than the classical
convergence time. The speedup over classical computation
is therefore comparable but, in our case, we obtain a
sampling of the exact stationary distribution rather than
an approximate version of it with errors that have to be
controlled. Our quantum algorithm is also simpler. Another
advantage of our method is that the relaxation time is
directly related to the average coalescence time [17] and
thus can be accurately measured.

It has been proven that the Grover algorithm is optimal,
in the sense that the number of calls to the oracle cannot be
lower (see [1] and references therein). Our quantum algo-
rithm can therefore be improved only by speeding up the
oracle part. This may be possible by combining our algo-
rithm with techniques used in the other approaches of [5–
10]. As the algorithm developed here is very general,
applying to a wide class of systems without any structure
taken into account, tailored algorithms may achieve a
larger gain in specific cases.
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