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We consider a class of random quantum circuits where at each step a gate from a universal set is applied

to a random pair of qubits, and determine how quickly averages of arbitrary finite-degree polynomials in

the matrix elements of the resulting unitary converge to Haar measure averages. This is accomplished by

mapping the superoperator that describes t order moments on n qubits to a multilevel SUð4tÞ Lipkin-
Meshkov-Glick Hamiltonian. We show that, for arbitrary fixed t, the ground-state manifold is exactly

spanned by factorized eigenstates and, under the assumption that a mean-field ansatz accurately describes

the low-lying excitations, the spectral gap scales as 1=n in the thermodynamic limit. Our results imply that

random quantum circuits yield an efficient implementation of � approximate unitary t designs.
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Random quantum states and unitary operators are
broadly useful across theoretical physics and applied
mathematics. Within quantum information science [1],
they play a key role in tasks ranging from quantum data
hiding [2] and quantum cryptography [3] to noise estima-
tion in open quantum systems [4–6]. Unfortunately, gen-
erating an ensemble of N-dimensional unitary matrices
which are evenly distributed according to the invariant
Haar measure on UðNÞ is inefficient, in the sense that the
number of required quantum gates grows exponentially
with the number of qubits, n ¼ log2N [1]. So-called uni-
tary t designs provide a powerful substitute for Haar-
distributed ensembles. Building on the notion of a state t
design [7], a unitary t design is an ensemble of unitaries
whose statistical moments up to order t equal (exactly or
approximately) Haar-induced values [6]. That is, a unitary
t design faithfully simulates the Haar measure with respect
to any test that uses at most t copies of a selected n-qubit
unitary. Ramifications of the theory of t designs [8] are
being uncovered in problems as different as black hole
evaporation and fast ‘‘scrambling’’ of information [9],
efficient quantum tomography and randomized gate bench-
marking [10], quantum channel capacity [11], and the
foundations of quantum statistical mechanics [12].

Prompted by the above advances, significant effort has
been devoted recently to identifying efficient constructions
of t designs and characterizing their convergence proper-
ties [2,6,13–16]. Harrow and Low established, in particu-
lar, the equivalence between approximate 2 designs and
random quantum circuits as introduced in [4], and conjec-
tured that a random circuit consisting of k ¼ polyðn; tÞ
gates from a two-qubit universal gate set yields an approxi-
mate t design [16]. While supporting numerical evidence
was gathered in [17] for low-order moments, and efficient
constructions of t designs were reported in [16] for any t ¼
Oðn= lognÞ, the extent to which random quantum circuits
could be used to implement an approximate t design for
arbitrary, fixed t remained open.

In this Letter, we address this question by determin-
ing the rate at which, for sufficiently large circuit depth,
statistical moments of arbitrary order converge to their
limiting Haar values. Our strategy involves two steps: first,
for given t, we show that the asymptotic convergence rate
is determined by the spectral gap of a certain super-
operator, which encapsulates moments up to order t;
next, we compute this gap by mapping the t-moment
superoperator to a multilevel version of the Lipkin-
Meshkov-Glick (LMG) model, whose low-energy spec-
trum is well understood in the thermodynamic limit
n ! 1 [18]. Remarkably, the ground-state manifold may
be exactly characterized for arbitrary n and t, whereas
obtaining the first excitation energy relies on a mean-
field ansatz whose validity has been extensively tested
for the class of infinitely coordinated models of interest.
Our approach ties together t design theory with es-
tablished mean-field techniques from many-body physics,
extending earlier results by Znidaric [14] for t ¼ 2.
Furthermore, asymptotic convergence rates allow us to
upper bound the convergence time (minimum circuit
length, kc) needed for a desired accuracy � relative to the
Haar measure to be reached. For any fixed t, we find that
the scaling kc � n logð1=�Þ holds for sufficiently large n
and small �.
Moment superoperator.—Let a random quantum circuit

of length k be a sequence Uk . . .U1 of k unitary operators
on an n-qubit Hilbert space H ¼ �n

jH qj , where each Ui

is selected from an ensemble f�ðUÞ; Ug, for a probability
distribution � with support on a universal gate set. To
analyze t-order moments, we introduce a Hilbert space
HMt

¼ H �2t, which consists of 2t copies of H and we

refer to as the moment space, with dimðHMt
Þ � D ¼ N2t,

and a local moment space H lt , which results from group-

ing factors corresponding to the same qubit in HMt
. That

is, HMt
¼ �n

jH
�2t
qj ¼ H �n

lt
, with dimðH ltÞ � d ¼ 4t.

Moments of order t may be described in terms of the
following linear operator on HMt

:
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Mt½�� ¼
Z

d�ðUÞU�t �U��t �
Z

d�ðUÞU�t;t:

Physically, Mt½�� may be viewed as the superoperator
induced by the action of t copies of the random circuit on
nt-qubit density operators defined on H �t (see also
Fig. 1). In line with standard practice in open-system
theory [19], we shall introduce ‘‘operator kets’’ in HMt

,

denoted jAii � A, and, correspondingly, hhAj ¼ Ay. Thus,
a D2-dimensional operator ket transforms according to
ðU �U�ÞjAii � UAUy, under U 2 UðDÞ. Once a basis
for HMt

is chosen, the matrix representation of Mt½��
specifies a complete set of t-order moments.

The probability distribution that describes a random
circuit of length k, �kðUÞ, is given by the kth fold con-
volution of � with itself [5,16]. That is, �kðUÞ ¼RQ

k
i¼1 d�ðUiÞ�ðU��k

i¼1UiÞ. It then follows that

Mt½�k� ¼
Z

�k
i¼1d�ðUiÞ�k

i¼1U
�t;t
i ¼ Yk

i¼1

Z
d�ðUiÞU�t;t

i

¼ ðMt½��Þk � Mk
t ½��:

Note that, under the assumption that the ensemble
f�ðUÞ; Ug is invariant under Hermitian conjugation,
�ðUÞ ¼ �ðUyÞ, Mt½�� is an Hermitian operator on HMt

.

If �ðUÞ has support on a universal set of gates, then the
measure over the random circuit converges to the Haar
measure on UðNÞ in the limit of infinite circuit length [5],
limk!1�kðUÞ ¼ �HðUÞ. We begin by characterizing how
these convergence properties translate in terms of t-order
moments. Let Mt½�H� ¼

R
d�HðUÞU�t;t, and let

V t ¼ spanfj�ii 2 HMt
jU�t;tj�ii ¼ j�ii; 8U 2 UðNÞg

be the subspace of fixed points of U�t;t, U 2 UðNÞ, with
PV t

denoting the corresponding projector. We claim that

lim
k!1

ðMt½��Þk ¼ PV t
¼ Mt½�H�; 8t: (1)

While this is implied by the results in [16], a self-contained
proof follows. Let j�ii be an eigenoperator of Mt½�� with
eigenvalue �, and j�Uii � U�t;tj�ii. Since jhhMt½��iij �R
d�ðUÞjhh�j�Uiij, it follows that j�j � 1, with equality

holding if and only if U�t;tj�ii ¼ j�ii for all U with

�ðUÞ � 0. Any such operator ket j�ii is also invariant
under any unitary of the form U�t;t, where U is generated
by a random circuit of arbitrary length, that is, U ¼
�k

i¼1Ui for any k, as long as �ðUiÞ � 0. Thus, if �ðUÞ
has support on a universal gate set, the eigenspace of
eigenvalue 1 is precisely V t. Since all other eigenvalues
of Mt½�� have magnitude less than 1, Mk

t ½�� converges to
PV t

. To establish the second equality in Eq. (1), we invoke

the invariance of the Haar measure under UðNÞ, �HðUÞ ¼
�HðU0UÞ. For j�ii an eigenoperator of Mt½�H�
with eigenvalue �, it follows that Mt½�H�j�ii ¼R
d�HðUÞU�t;tj�ii ¼ �j�ii. Thus,

U0�t;t�j�ii ¼
Z

d�HðUÞðU0UÞ�t;tj�ii

¼
Z

d�HðU0yUÞU�t;tj�ii

¼
Z

d�HðUÞU�t;tj�ii ¼ �j�ii:
If � � 0, it follows that j�ii 2 V t, otherwise � ¼ 0,
which establishes the desired result.
Our next goal is to obtain the rate at which Mk

t ½��
approaches Mt½�H�. Since Mt½�H� projects onto the ei-
genspace ofMt½�� of eigenvalue 1, the distance kMk

t ½�� �
Mt½�H�k with respect to any norm depends only on the
remaining eigenvalues f�ig of Mt½�� and the correspond-
ing eigenprojectors f�ig. Specifically, if k is sufficiently
large, kMk

t ½���Mt½�H�k¼kP�i�1�
k
i�ik�j�1jkk�1k,

where �1 � 1��t is the subdominant eigenvalue of
Mt½��. Thus, the asymptotic convergence rate is entirely
determined by the spectral gap �t of Mt½��.
Spectral gap determination.—The starting point for

mapping Mt½�� to a multilevel LMG model is to ensure
that the following conditions are obeyed: (i) The applied
quantum gates consist only of single- and two-qubit gates
selected according to a distribution ~�ðUÞ on Uð4Þ, with
~�ðUÞ ¼ ~�ðUyÞ; (ii) the target pair of qubits is picked
uniformly at random. We shall refer to the class of circuits
obeying (i)–(ii) as permutationally invariant random quan-
tum circuits. Since, in each application of a random gate U
to a fixed pair of qubits, U�t;t acts nontrivially only on the
associated bilocal moment space H lt �H lt , and each

pair is equally likely to be chosen, the moment superoper-
ator may be written as follows:

Mt½�� ¼ 2

nðn� 1Þ
Xn

i<j¼1

mij
t ½ ~��; (2)

where for any pair i, j the restriction mt½ ~�� of mij
t ½ ~�� to

H lt �H lt acts as mt½ ~�� ¼ R
d ~�ðUÞU�t;t. Recalling that

dimðH ltÞ ¼ d, Mt½�� thus defines a qudit Hamiltonian,

which is invariant under the symmetric group Sn of per-
mutations of the n local moment spaces. Explicitly,
if fbi��¼j�iihh�jg denotes an outer-product basis for op-

erators acting on any H lt , we may expand mij
t ¼P

d
����¼1hh��jmtj��iibi��bj�� � P

d
����¼1 c����b

i
��b

j
��,

FIG. 1. The moment spaceHMt
may be visualized as an array

of 2nt qubits, such that t copies support a ket in the state space
on nt qubits, and the remaining t copies the corresponding bra. In
this way, a unitary U on n qubits induces a transformation U�t;t
on density operators on nt qubits. Dashed rectangles indicate the
2t qubits corresponding to a local moment space H lt . Ovals

correspond to a unitary U acting only on the first two qubits.
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and rewrite Mt½�� as a quadratic function of the collective
operators B�� ¼ P

n
i¼1 b

i
��, that is, Mt½�� ¼ 1

nðn�1Þ 	Pd
����¼1 c����ðB��B�� � ���B��Þ. Since the operators

B�� obey SUðdÞ commutation rules, ½B��; B��� ¼
B����� � B��;���, HMt

carries the (reducible) collec-

tive n-fold tensor product representation of SUðdÞ, and
Mt½�� provides a d-level extension of the standard,
spin-1=2 LMG model [20].

Thanks to the invariance under Sn, each of the eigenop-
erators of Mt½�� belongs to an irreducible representation
(irrep) of SUðdÞ. Our first step is to show that the eigen-
space V t of Mt½�� corresponding to the ground-state
(extremal) eigenvalue of 1 lies in the totally symmetric

irrep, of dimension dS ¼ ð4tþn�1
n Þ [21]. Recall that V t

consists of operators in HMt
that commute with all

t-fold tensor power unitaries U�t. By Schur-Weyl duality
[16,21], every such operator is a linear combinations of
elements of St, under the natural representation in H �t.
Note that the operators spanning V t are permutations of
the t copies of H rather than permutations of the n local
moment spacesH lt . One may write any such permutation

as j	ðnÞii ¼ P
N
i1...it¼1 ji1 . . . itihi	ð1Þ . . . i	ðtÞj, where 	 2

St. Furthermore, each such permutation may be
viewed as a product ket relative to the factorization

HMt
¼ H �n

lt
. Explicitly, j	ðnÞii ¼ ðj	iiÞ�n, where

j	ii ¼ P
i1...it¼0;1ji1 . . . itihi	ð1Þ . . . i	ðtÞj 2 H lt . The fact

that V t is exactly spanned by product states is significant
from the perspective of mean-field theory. For arbitrary
SUðdÞ quadratic Hamiltonians, it has been rigorously es-
tablished that the exact ground-state energy is given in the
thermodynamic limit by a mean-field ansatz equivalent to
assuming that the ground-state is an SUðdÞ coherent state
[20]. Since, for the completely symmetric irrep, the mani-
fold of coherent states consists precisely of all product
states [22], the mean-field extremal eigenspace of Mt½��
is, in fact, exact for any finite n.

The next step is to determine the lowest excitation
energy in the large-n limit, which is accomplished by
expanding Mt½�� around an arbitrary extremal mean-field
state for each irrep. For the totally symmetric irrep, the
required diagonalization procedure is most straightfor-
wardly carried out by realizing the UðdÞ algebra in terms

of d canonical Schwinger boson operators fa�; ay�g [23].
That is, we let B�� ¼ ay�a� and rewriteMt½�� ¼ 1

nðn�1Þ 	P
d
����¼1 c����a

y
�a

y
�a�a�. Since the totally symmetric

irrep of HMt
contains exactly n Schwinger bosons, it is

possible to eliminate one boson mode by regarding it as
‘‘frozen’’ in the vacuum for a generalized Holstein-
Primakoff transformation [23]. Specifically, let the local
basis be chosen so that the frozen mode corresponds to

j	ii, and let 
ðnÞ � ðn�P
��	a

y
�a�Þ1=2, with ay	 ! 
ðnÞ,

a	 ! 
ðnÞ. Two simplifications may now be invoked: first,

the fact that j	ðnÞii is an exact ground-state causes any
coefficient of the form c�	�	, c�			 (and their complex

conjugates) to vanish; second, only terms up to the leading
order in 1=n need to be kept in 
ðnÞ. This finally yields

Mt½��¼1� 1
n

P
d
��¼1E��a

y
�a�þOð1=n2Þ, where E�� ¼

2ð��� � hh	�jmtj	�ii � hh	�jmtj�	iiÞ. To leading or-

der, the desired gap is then determined by the smallest
eigenvalue, a1, of E��. That the latter is nonzero may be

shown by exploiting basic properties of the superoperator
mt [24]. That no other excitation with a larger eigenvalue
may exist, which is not captured by the 1=n expansion, has
not been rigorously justified to the best of our knowledge—
although, for LMG Hamiltonians, this is supported by an
extensive body of theoretical and numerical investigations
[18] (see also [24]). Subject to this conjecture, our main
result follows: For any permutationally invariant random
quantum circuit, and for any fixed t > 0, the spectral gap
may be expanded as

�t ¼
X1
p¼1

apn
�p ¼ a1

n
þO

�
1

n2

�
; (3)

for coefficients fapg that may in general depend on t. A

stronger result may be obtained for a subclass of random
quantum circuits which are, in addition, locally invariant,
that is, ~�ðUÞ is invariant under the subgroup Uð2Þ 	
Uð2Þ 
 Uð4Þ of local unitary transformations on the two
target qubits. In this case, it is possible to choose a basis for
each local moment space H lt , which includes a maximal

set of t-qubit operators fj!iig in the commutant of U�t,
with U 2 Uð2Þ. Accordingly, every matrix element
hh��jmtj��ii ¼ 0, unless each local basis element is itself
an invariant, and the large-n behavior of the gap is deter-
mined by matrix elements of the form hh	!jmtj	!ii and
hh	!jmtj!	ii, with 	 2 St (without loss of generality,
we may choose j	ii ¼ jIiiÞ and j!ii an arbitrary
Uð2Þ invariant with hh	j!ii ¼ 0. Since, for t > 1, the
maximum value of any such matrix element is independent
of t (see [24] for full details), it follows that the leading
order term a1 does not depend on t for locally invariant
random quantum circuits.
Example.—Consider the simplest case where t ¼ 2 and

~�ðUÞ ¼ �HðUÞ on Uð4Þ. The invariant eigenspace V 2 of

M2 is spanned by the identity jIðnÞii ¼ ðjIiiÞ�n and the per-
mutation jSðnÞii ¼ ðjSiiÞ�n that swaps the t ¼ 2 copies of
H ¼H �n

q . Since ~�ðUÞ is the Haar measure,m2 is the pro-

jector onto the subspace V 2 for n ¼ 2 qubits. To find the
excitation energies, we choose one of the extremal local
kets, jIii, and minimize Emin¼2minð1�hhI�jm2jI�ii�
hhI�jm2j�IiiÞ over all local operators j�ii 2 H lt or-

thogonal to jIii. This yields j�ii ¼ jSii � hhSjIiijIii ¼
~	1 � ~	2, and �t ¼ 6=5nþOð1=n2Þ. To determine how
quickly the large-n scaling sets in, the fully symmetric
sector of Mt½�� under Sn was numerically diagonalized.
Since �HðUÞ is invariant under Uð2Þ 	Uð2Þ transforma-
tions, H l2 may be restricted to the subspace of SUð2Þ
invariants. From angular momentum theory [21], the num-

ber of such invariants is
P

Jm
2
J ¼ ð2tÞ!

ðtþ1Þ!t! ¼ Ct, where mJ is
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the multiplicity of the SUð2Þ irrep with angular momentum
J. This yields dlocS ¼ ðCtþn�1

n Þ � dS, which makes numeri-

cal comparisons tractable for small t. Exact results for t ¼
2 and 3 (see Fig. 2) indicate that the scaling prediction for
�t becomes very accurate for n * 14.

Convergence time.—In order to establish the usefulness
of a random circuit as an � approximate unitary t design
[6,16], we need to upper bound the circuit length required
to achieve a specified accuracy �. Let the convergence time
with respect to a given norm be defined by the minimum

length kc for which kMkc
t ½�� �Mt½�H�k � �. ThatMt½��

be operationally indistinguishable from Mt½�H� requires
that the supremum of kðMk

t ½�� �Mt½�H�Þð�Þk1 be suffi-
ciently small over all nt-qubit density operators �. We may
bound the 1 norm starting from the 2 norm [16]. For any
density matrix �, kðMk

t ½���Mt½�H�Þð�Þk2��k
1. This fol-

lows from normalization of � and the fact that Mt½�H�
projects onto the eigenspace of eigenvalue 1 of Mt½��. In
conjunction with the Cauchy-Schwartz inequality, this im-
plies kðMk

t ½�� �Mt½�H�Þð�Þk1 � 2nt�k
1. Requiring that

2nt�kc
1 � � finally yields kc���1

t ðlogð1=�Þþnt logð2ÞÞ.
Since, using Eq. (3),��1

t ¼ P1
p¼1 a

0
pn

2�p � a�1
1 n to lead-

ing order, kc ¼ a�1
1 n logð1=�Þ for sufficiently small �. It is

important to stress that since the coefficients, ai, for i > 1,
may scale as polynomials in d ¼ 4t, the above result for kc
is required to hold only for t ¼ OðlognÞ. While improving
this asymptotic bound is important for fully characterizing
random circuits, our results are directly relevant to physical
applications, where t is fixed.

In summary, we have shown that, subject to a well-
supported mean-field ansatz, a large class of random quan-
tum circuits are efficient � approximate unitary t designs
for arbitrary finite t. The fact that the extremal eigenoper-
ators are separable suggests that similar results may apply
to more general random circuits for which the Hermiticity
and/or the Sn-invariance assumptions of the moment
superoperator need not hold [25]. A remaining open ques-
tion is to determine how the circuit length scales as the
limits of large n and large t are taken together. This may
resolve the apparent paradox that while Haar random

unitaries are inefficient, arbitrary t designs are not, possibly
with equal asymptotic rates.
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FIG. 2 (color online). Inverse spectral gap ��1
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