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Particle production due to external fields (electric, chromoelectric, or gravitational) requires evolving

an initial state through an interaction with a time-dependent background, with the rate being computed

from a Bogoliubov transformation between the in and out vacua. When the background fields have

temporal profiles with substructure, a semiclassical analysis of this problem confronts the full subtlety of

the Stokes phenomenon: WKB solutions are only local, while the production rate requires global

information. We give a simple quantitative explanation of the recently computed [Phys. Rev. Lett. 102,

150404 (2009)] oscillatory momentum spectrum of eþe� pairs produced from vacuum subjected to a

time-dependent electric field with subcycle laser pulse structure. This approach also explains naturally

why for spinor and scalar QED these oscillations are out of phase.

DOI: 10.1103/PhysRevLett.104.250402 PACS numbers: 12.20.Ds, 03.65.Sq, 11.15.Tk

The Schwinger effect, the nonperturbative production of
electron-positron pairs from vacuum in an external electric
field, is a highly nontrivial prediction of QED [1–3], but the
physical scales are such that it is so weak that it has not yet
been directly observed. Recent experimental advances [4]
have raised hopes that lasers may achieve fields just 1 or
2 orders of magnitude below the critical field strength of
Ecr � 1016 V=cm, either in optical high-intensity laser
facilities such as HiPER (Rutherford Laboratory) and the
Extreme Light Infrastructure (ELI), or in x-ray free elec-
tron laser facilities. Theoretically, recent analyses suggest
that the nonperturbative Schwinger effect may be observ-
able at these lower field strengths, by careful shaping and
combining of laser pulses leading to a ‘‘dynamically as-
sisted Schwinger mechanism’’ enhancement [5–10]. The
most important message is that the detailed shape of the
laser pulse is significant, which motivates the extension
presented here of the standard WKB approach to include
more realistic laser field profiles.

Observation of the Schwinger effect in the nonperturba-
tive domain has the potential to yield valuable insight into
analogous gravitational effects [11,12], such as Unruh and
Hawking radiation, where direct experiments are not fea-
sible, and where issues such as backreaction and out-of-
equilibrium physics are poorly understood. The basic phys-
ics is also relevant for atomic, molecular, astrophysics, and
plasma physics with ultrahigh intensity lasers, where non-
perturbative effects are crucial [13,14], for heavy ion col-
lisions [15], and for the Landau-Zener effect.

We model the electric field in the focal region of two
counterpropagating laser pulses by a spatially homogene-

ous electric field ~EðtÞ ¼ ð0; 0; EðtÞÞ, with vector potential
~AðtÞ ¼ ð0; 0; AðtÞÞ, such that EðtÞ ¼ � _AðtÞ with

EðtÞ ¼ E0 cosð!tþ�Þ exp½�t2=ð2�2Þ�: (1)

Even in this approximation where we neglect spatial focus-
ing, the laser field may involve many physical scales,
leading to interesting new phenomena [16]. Here ! is the

laser frequency, � defines the pulse length, and � is the
‘‘carrier-phase’’ offset. The first surprising result in [16]
was that the longitudinal momentum spectrum of the pro-
duced electron-positron pairs is extremely sensitive to the
value of !�, even when � ¼ 0. For !� * 4, the momen-
tum spectrum exhibits oscillations, and these become dra-
matically enhanced as � increases, to the point where at
� ¼ �=2 the spectrum develops minima with zero pro-
duced pairs (see Fig. 4 in [16]). The second surprising
result in [16] was that the oscillatory minima and maxima
are interchanged between spinor and scalar QED. By con-
trast, when computing the total pair production rate (ob-
tained by an integral over the momenta), one
conventionally approximates the case of real spinor QED
by scalar QED, with an overall multiplicative spin factor
of 2. A direct application of the usual semiclassical
‘‘imaginary time method’’ (ITM) [17–21] to this problem
does not account for these oscillations, let alone for the
difference of phase between spinor and scalar QED. Here
we show that the Stokes phenomenon gives a quantitative
semiclassical explanation of both these effects.
The essential physical interpretation of these oscillations

is a resonance effect in the corresponding quantum me-
chanical scattering problem [16]. This same physical ex-
planation has also been noted for the photoelectron
spectrum in atomic ionization [19], where such oscillations
have been observed [22,23]. We turn this physical picture
into a quantitative method. This should also be relevant for
the matterless double-slit experiment [16,24]. Recall that
with a time-dependent electric field, the pair production
process can be reduced to a one-dimensional over-the-
barrier ‘‘quantum mechanical’’ scattering problem
[3,17,18], with effective ‘‘Schrödinger equation’’ (in t
rather than x)

€�þQ2ðtÞ� ¼ 0; Q2ðtÞ � m2 þ p2
? þ ½p� AðtÞ�2

(2)

coming from the Klein-Gordon equation for the particle in
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the presence of the laser field. (We first discuss scalar QED
and later come to spinor QED, where the relevant equation
is the Dirac equation.) It is an over-the-barrier scattering
problem since the ‘‘potential’’, �½p� AðtÞ�2, is negative,
while the ‘‘energy’’ (m2 þ p2

?) is positive. Thus the reflec-
tion coefficient, from which we deduce the probability of
pair production, is exponentially small in the semiclassical
regime where E0 � m2. This scattering problem can be
solved using WKB methods, or numerically using the
quantum kinetic approach [16,25] or direct integration of
the scattering problem [18]. The equivalence between
these approaches is explained in [26].

The Bogoliubov transformation approach [17–21,25] is
based on the field decomposition

� ¼ �ffiffiffiffiffiffiffi
2Q

p e�i
R

t
Q þ �ffiffiffiffiffiffiffi

2Q
p ei

R
t
Q;

_� ¼ �iQ

�
�ffiffiffiffiffiffiffi
2Q

p e�i
R

t
Q � �ffiffiffiffiffiffiffi

2Q
p ei

R
t
Q
�
;

(3)

which enforces equations relating the coefficient functions
� and �. Unitarity requires j�j2 � j�j2 ¼ 1, and the par-
ticle number momentum spectrum is Nð ~pÞ ¼ j�~pðt ¼
1Þj2, related to the reflection coefficient jRj2 ¼ j�j2=ð1þ
j�j2Þ. The Stokes phenomenon is relevant because in cal-
culating jRj2 we compare �ðt ¼ 1Þ to �ðt ¼ �1Þ.
However, the leading WKB solutions, e�i

R
Q=

ffiffiffiffiffiffiffi
2Q

p
, on

which (3) is based, are multivalued functions, only defined
locally. Evolving a semiclassical approximation from t ¼
�1 to t ¼ þ1, we cross Stokes and anti-Stokes lines,

lines along which e�i
R

t
Q are exponential or oscillatory,

respectively. On crossing such lines, we must take care to
keep track properly of the dominant and subdominant
solutions. This is the Stokes phenomenon [27–30].

Suppose the zeros of QðtÞ, the ‘‘turning points’’ (TPs),
are first order. Since this is an over-the-barrier scattering
problem, the TPs lie off the real axis, in the complex plane,
and for real laser pulses they occur in complex conjugate
pairs; furthermore, those closest to the real axis tend to
dominate in the semiclassical regime. For a simple single-
pulse field such as EðtÞ ¼ E sech2ð!tÞ, with AðtÞ ¼
�E=! tanhð!tÞ, or EðtÞ ¼ Ee�ð!tÞ2 , with AðtÞ ¼
� ffiffiffiffi

�
p

E=ð2!Þ erfð!tÞ, a single pair of complex conjugate
TPs dominates, and the phase integral method leads to the
familiar formula [19,27,30–32]

Nð ~pÞ � e�2K; K ¼
��������
Z
TP

Qdt

��������; (4)

where the integral is along the line joining the two complex
conjugate TPs. In the ITM, one expands in momenta to
obtain the general Gaussian expression [18]

Nð ~pÞ � exp½�Scl � c1p
2
? � c2p

2�; (5)

where Scl is the classical action evaluated on the contour,

c1 ¼ @
@m2 Scl, and c2 ¼ �2m2 @2

@ðm2Þ2 Scl. This ITM result (5)

[18,19] gives a compact expression that is the basis for
most studies of vacuum pair production, and when inte-
grated over momentum to give the total rate it gives
excellent agreement with numerical (or exact) results
[3,18,20,21,33,34]. In [35], (5) was applied to the envelope
field (1) with � ¼ 0. However, the expression (5) clearly
cannot exhibit any of the numerically observed oscilla-
tions, as noted in [16]. This deficiency is not cured by
higher-order terms in the momentum expansion in (5), nor
is it cured by including higher-order WKB terms. The
problem is that (4) and (5) are based on the assumption
of just one pair of turning points, on the imaginary axis.
However, for complicated fields, with subcycle structure,
the essential shape of the ‘‘scattering potential,’’ �½p�
AðtÞ�2, changes dramatically as p varies, as illustrated in
Fig. 1. This can lead to scattering resonances, encoded
semiclassically in multiple pairs of complex conjugate
TPs, whose locations are correspondingly sensitive to
variation of p. We show below that the oscillatory momen-
tum behavior can be identified with interference effects
between such pairs of turning points.
To illustrate the oscillatory phenomenon most clearly,

we consider a simple analytic profile field that exhibits the
effect found in [16]. The maximal oscillation effect occurs
with carrier phase � ¼ �=2, so that EðtÞ is an odd func-
tion, and AðtÞ an even function, so we choose

AðtÞ ¼ E=½!ð1þ!2t2Þ�: (6)

The scattering potential is plotted in Fig. 1. The algebraic
form of the vector potential makes it easy to find the
turning points, occurring as two complex conjugate

pairs: t1ðpÞ¼�½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=!�ðpþ imÞp

=!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ im

p �¼ t2ðpÞ� ¼
�t3ðpÞ� ¼�t4ðpÞ, as shown in Fig. 2. Notice that all four
TPs are equidistant from the real axis, for all p. Figure 2
also shows the Stokes and anti-Stokes lines. Since there are
two pairs of TPs, the WKB analysis leading to (4) and (5)
must be generalized to account for the crossing of multiple
Stokes and anti-Stokes lines for multiple pairs of TPs in
evolving from t ¼ �1 to t ¼ þ1. This corresponds to the

p=2

p=1.5

p=1
t

V t

FIG. 1 (color online). The effective scattering potential,
VðtÞ ¼ �½p� AðtÞ�2, for scalar QED, with the field in (6), for
three different values of the longitudinal momentum, in units of
electron mass m. Note that the form of the potential is highly
sensitive to the value of p. The dashed line denotes the mass
level m2.
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case of over-the-barrier scattering with two bumps in the
scattering potential, which has been solved in [36] using
the phase integral approximation. Adapting their result, we
find the simple expression

Nscalar � e�2K1 þ e�2K2 þ 2 cosð2�Þe�K1�K2 ;

K1 ¼
��������
Z t2

t1

Qdt

��������; K2 ¼
��������
Z t4

t3

Qdt

��������;

� ¼ L� �ðK1Þ � �ðK2Þ; L ¼
��������Re

�Z t3

t2

Qdt

���������;

�ðKÞ ¼ 1

2

�
K

�

�
ln

�
K

�

�
� 1

�
þ arg�

�
1

2
� i

K

�

��
: (7)

In fact, in this case K1 ¼ K2, so we can write Nscalar �
4cos2ð�Þe�2K1 . Note the appearance in (7) of the interfer-
ence term, cosð2�Þ, involving an integral between different
pairs of turning points. This term is responsible for the
oscillations in the momentum spectrum, as shown in Fig. 3
where we compare (7) with the exact numerical result, and
with a naive application of the ITM result (4), just taking
the first two terms in (7). The agreement of (7) with the
numerical result is excellent. A generalization to more than
two pairs of TPs is discussed in [37].

Having given a quantitative semiclassical explanation of
the longitudinal momentum oscillations for scalar QED,
we now turn to spinor QED, for which there is a similar
scattering formulation [18,20,26]. The key difference is
that the unitarity conditions on the spinor Bogoliubov
coefficients have a reversed sign relative to the scalar
case: now j�j2 þ j�j2 ¼ 1. This changes the form of the
Fmatrix of the phase integral approximation in [36], and is
ultimately related to the double-valuedness of the spinor
wave function. We find the scalar result (7) is modified to

Nspinor � e�2K1 þ e�2K2 � 2 cosð2�Þe�K1�K2 ; (8)

where theKi and� are defined as in (7). The only change is
the sign of the interference term. [When K1 ¼ K2, as for

the field in (6), we have Nspinor � 4sin2ð�Þe�2K1 .]

Physically, this term is produced by interference between
waves reflected by the double-bump structure, and for
fermions there is an additional phase shift on reflection,
which ultimately leads to this sign change. In Fig. 3 we plot
this spinor result (8) and we see that it is in excellent
agreement with the exact numerical results. The results
(7) and (8) explain clearly why the oscillations are out of
phase between spinor and scalar QED, and why the enve-
lope of the two is the naive ITM result. Of course, if one is
interested only in the total pair production rate, obtained by
integrating over p, then the difference between spinor and
scalar QED is washed out, and agrees with the answer
obtained by integrating over the envelope result coming
from just the first two terms in (7) or (8), since they
oscillate about the same envelope. To conclude, we sketch
in Fig. 4 the turning points of the carrier-phase field in (1),

10 5 0 5 10

4

2

0

2

4

Re t

Im
t

FIG. 4 (color online). Contour plot of jm2 þ ½p� AðtÞ�2j for
the electric field (1), with � ¼ �=2, p ¼ 0, and !� ¼ 4, show-
ing the infinite set of pairs of complex turning points. The two
central pairs closest to the real axis dominate the semiclassical
analysis.
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1.5 10 8
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FIG. 3 (color online). Longitudinal momentum spectrum of
eþe� pairs for the field (6), for E ¼ 0:2, ! ¼ 0:1, all in units
of electron mass m. The solid lines are our WKB expressions in
(7) and (8), the dashed lines are exact numerical results, and the
dotted (red) line is the naive ITM expression, neglecting the
interference term. The oscillatory blue lines are scalar QED and
the oscillatory black lines are spinor QED. The quantitative
agreement of (7) and (8) with the numerics is excellent.

t1 t3

t2 t4

Re t

Im t

FIG. 2 (color online). The four complex turning points,
t1; . . . ; t4, for the field (6), showing also the anti-Stokes lines
(solid blue lines), Stokes lines (dotted black lines), and the
integration contours (dashed red lines) used in (7) and (8).
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for the case � ¼ �=2. Note that there are infinitely many
pairs of complex conjugate TPs. But the two pairs of TPs
closest to the real axis dominate, and using formulas (7)
and (8), we reproduce the oscillatory behavior of the
electron-positron longitudinal momentum spectrum found
numerically in [16]. When � ¼ 0 the sensitivity to the
value of!� can also be understood in terms of the location
of the TPs.

Our result is general and simple to use, and has appli-
cations beyond this particle-production context, for ex-
ample, to strong-field ionization of atoms and molecules
[13,19], to particle-production problems in cosmology
[12,38], and to quasinormal modes of black holes [39].
The basic message is that when the time dependence of the
external background field has more substructure than just a
single bump, the usual textbook ITM result (4) generalizes
in an interesting way that requires fuller consideration of
the Stokes line structure of the associated scattering prob-
lem, and there are important differences between the mo-
mentum spectra of produced spinor or scalar particles. This
also has important implications for the worldline approach
to pair production [40], which has the potential to describe
pair production in electric fields with both temporal and
spatial inhomogeneity.
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