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Shear Relaxation in Iron under the Conditions of Earth’s Inner Core
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Large scale molecular dynamics simulations of iron at high pressure and temperature are performed to
investigate the physics of shear softening. A solid 16 X 10° atoms sample of iron is grown out of the liquid
with a small solid immersed in it at the start of simulation. We observe that diffusion in the sheared solid is
similar to that in liquid, even though at different time scales. This allows us to describe the time
dependence of shear stress in terms of elastic and hydrodynamic relaxation. The elastic response of the
sample is close to the elastic response of Earth’s inner core. This explains the abnormally low shear
modulus in the core. The reason for the low shear modulus is the presence of defects of the crystal

structure.
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The standard approach to calculating elastic properties
of a polycrystalline material consists in computing elastic
constants of a single crystal and then averaging them
according to some rule [1]. This approach, however, does
not consider that crystals at high temperature are highly
populated with various defects that might change their
properties. Consideration of dislocations is helpful for the
comparably low temperature materials, because at high
temperature dislocations disintegrate for entropic reasons.
The increasing number of defects is likely to affect mostly
shear properties.

The most notorious failure of the averaging of the prop-
erties over ideal crystal orientations is its inability to ex-
plain the low shear modulus of Earth’s inner core [2].
Earth’s inner core (IC) material is mostly iron [3].
Indeed, the resistance of iron and its alloys to shear, either
measured [4,5] or calculated [6], does not match the very
low resistance to shear of the IC, as follows from the low
velocity of the shear signal propagation [7,8]. The pressure
(P) in the IC varies from 3.3 to 3.65 Mbar [7]. The melting
temperature (7) of iron in the core was predicted to be
above 7100 K [9,10] and the recent quantum Monte Carlo
calculations [11] provided a melting 7 consistent with the
earlier predictions. Some of the previous simulations pre-
dicted lower temperatures of iron melting at the P =
3.3 Mbar (6600 = 500 K and 6300 = 100 K [12]). The
most obvious reason for this discrepancy is that while the
model in Ref. [10] was fitted to the all-electron first prin-
ciples method data, the calculations that gave lower tem-
peratures (not much lower, but still) relied on the explicit
treatment of only 6 valence electrons. The question of the
iron stable phase in the core is debated [13,14]. Recently,
the stability of the body-centered cubic phase was indi-
rectly confirmed by diamond-anvil cell (DAC) experiments
[15]. Considering that addition of Si [16,17] makes the bcc
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phase more stable [18,19] while lowering the melting
temperature of the hexagonal (hcp, the bcc competitor)
phase [12], the likely phase of the material in the IC is
bee. Indeed, the anisotropy of seismic waves propagation
in the IC [8] might be explained if the IC is bee Fe and can
not be explained if Fe is stable in hcp phase [20]. The hcp
phase becomes isotropic at high temperature and the fcc,
another proposed candidate, is isotropic by the virtue of the
symmetry. Therefore, we have chosen to investigate the
bce iron phase at the pressure of the IC at temperatures
close to melting (in the vicinity of 7000 K). The model we
use (embedded atom method) is very well tested
[2,10,13,20-24] and its use in the present study is well
justified. The phase diagram of the model and comparison
to experimental data are provided in Ref. [13] (Fig. 4).
Our plan was to simulate a very large system that would
contain an equilibrium number of defects. For that purpose,
we have chosen the method of molecular dynamics (MD)
to simulate the process of crystallization, similar to the
approach used in the studies of Xe [25]. First, we simulated
the liquid phase of iron starting from the bcc structure. The
initial structure was obtained by a 200 X 200 X 200 trans-
lation of the bcc unit cell containing 2 atoms. Then, we
applied the temperature of 12000 K and pressure of
3.65 Mbar maintaining the cubic shape but allowing vol-
ume to change during MD simulation. During the equili-
bration stage the temperature was maintained by velocity
scaling. After obtaining the liquid structure, it was ther-
malized at 7000 K and 3.65 Mbar by applying Berendsen
thermo- and barostat. This is only 300 = 100 degrees lower
than the melting temperature, so no solidification took
place [the corresponding radial distribution function
(RDF) is typical of a liquid, as shown in Fig. 1]. After
that, a 400 thousand atoms bcc sample was immersed in the
center of the liquid box (the sample was presimulated at the
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FIG. 1 (color online). Radial distribution functions of the
initially two-phase system (bcc sample immersed in liquid) at
different stages of solidification (the time from the start of
simulation is indicated in legend) compared to liquid (thick
curve) and solid (thin curve) at P = 365 GPa and 7" = 7000 K.

same P and T as for the liquid). The “liquid” atoms that
overlap with the solid sample were removed. Thus, we
obtained a two-phase system and, starting from 7200 K
and 3.65 Mbar, that is just under the melting conditions
[10], we began MD simulations in the N VEo ensembles.
The cutoff of the potential was chosen at 6.0 A. Tests with
higher cutoffs show negligible changes. The time step was
equal to 0.0005 ps. The solid sample in the center of the
box started to grow, temperature went up (due to the heat of
crystallization) and pressure went down (because of the
higher density of the solid phase). As soon as the simula-
tion arrived at a point on the melting curve and crystalli-
zation stopped, the simulation was restarted at a slightly
lower temperature and the whole process was repeated.
Eventually, we obtained a completely solid (bcc) sample
with defects that appear naturally during crystal growth.
The final temperature was about 6700 K and the pressure
was around 3.4 Mbar. The initial, final, and intermediate
structures are shown in Fig. 1. One can see that the starting
structure is typical of a liquid. After about 0.8 ns the
structure becomes solid. Still we run the simulation for
another nanosecond (2 X 10° time steps) to ensure that
nonequilibrium defects are annealed. The next step is to
shear the sample and measure the shear resistance.

The sample, that was a cube with an edge of about
50 nm, was sheared by 1 nm. The shear was applied in
such a way that the “new” atom coordinates in the de-
formed sample were obtained from the ““old” coordinates
according to the formula X,.,, = X,q + Yd/L,d = 1 nm
is the shear magnitude and L is the size of the cubic box
(=50 nm). Such a shear corresponds to the strain normally
applied to calculate C4. Then, we performed the MD
simulation of this sample keeping constant shape and

temperature of 6700 K applying the Berendsen thermostat.
This strain is definitely within the elastic limit for an ideal
crystal. The sheared structure was simulated for 0.32 ns,
recording the mobility of atoms (Fig. 2) and shear modulus
(Fig. 3) (computed as the negative stress divided by strain).

The shear modulus is no longer constant and changes
over time (Fig. 3) (the shear stress was averaged every 100
time steps to get the “‘instant” shear stress). This is in
contrast to the case of ideal bcce structure, where the shear
stress is strictly constant. Eventually, the shear modulus
becomes lower than in the IC (about 200 GPa [7]).
However, what is the mechanism behind such a behavior?
We note that the mobility of atoms in the sheared solid
sample (Fig. 2) is similar to their mobility in liquid, though
the time scale is different. Certain differences are, of
course, there: note the shoulder on the mobility curves
for solids. The shoulder appears due to the lattice quantized
mobility; however, it is a rather minor feature. Therefore,
we decided to describe the stress relaxation in a way
similar to the approach applied for liquids.

Generalized shear viscosity and shear relaxation for
liquids can be well described by generalized hydrodynam-
ics [26]. The simplest viscoelastic dynamic model for
transverse dynamics yields for transverse mass current a
two-exponential expression [27] for the correlation decay:

Fiy(k 1) = Ape a0 4+ A e, (1)

where the first term corresponds to the hydrodynamic
process of shear relaxation, whereas the second term rep-
resents nonhydrodynamic (kinetic) effects in dynamics.
The wave-number-dependent inverse relaxation times
z;(k) are expressed as follows:
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FIG. 2 (color online). Mobility of atoms (defined as the dis-
tance that an atom traveled from its position in the starting
configuration) at different times in the sheared sample. The
mobility in liquid is provided for comparison. Note the shoulder
that develops in the solid at a larger distance. This shoulder is
likely due to the structure modulated by the lattice.
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where G is shear modulus. When k — 0, i.e., on macro- @
scopic distances in liquids z,(k) < z;(k), and only the 100 |
hydrodynamic mechanism of shear relaxation is important,
that also prohibits the propagation of shear waves on

macroscopic distances. Only on nanoscales, corresponding
to some wave number k, such that z;,(k,) = z;(k,), the
shear waves can emerge in the liquid.

One can formally apply expression (1) to a finite sample
by associating its length L with a characteristic wave
number k = 27r/L. Hence the relaxation times are

(i) for hydrodynamic decay

pL*
- ) 4
T 47’ X
(ii) for elastic decay
npL®
= = 5
Tk GpL? — 41 n? )

Now, let us assume that on large time scales the solid
behaves as a liquid. Indeed, we see that at times of ap-
proximately 100 ps and more, the mobility of atoms in the
solid is comparable to that in the liquid (Fig. 2). In a solid,
at short times both elastic and viscous response can con-
tribute to the shear modulus. However, only elastic re-
sponse can facilitate the propagation of the transverse
wave.

Therefore, we will describe the time dependence of the
shear modulus by the equation

G() = G,e7"/" + G e™'/n, (©6)

where G, and G, are the elastic and viscous parts of the
shear modulus at r = 0, and ¢, and 7, are the characteristic
times of elastic and viscous response. Indeed, the time
dependence of the shear modulus can be very well de-
scribed by Eq. (6) (Fig. 3).

The important implication is that the elastic response of
iron in the IC is significantly smaller than the shear re-
sponse in total. However, it is the elastic response that
provides propagation of the transverse wave. The instant
shear modulus at time O that belongs to the nondissipating
part of the elastic response of iron to the strain is about
280 GPa (Fig. 3). This is higher than 200 GPa deduced
from seismic measurements, although it is significantly
lower than 392 = 10 GPa for the ideal bcc crystal. The
difference between 200 and 280 GPa can be attributed to a
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FIG. 3 (color online). Time dependence of the shear modulus
(defined as the negative of stress divided by strain) in the sheared
sample (in an ideal crystal the shear corresponds to the cyy
elastic constant). The shear is equal to 0.02. The modulus is
fitted with the 2 exponent expression (Eq. (6)) with an extremely
small error of fitting. Each exponential term is also shown
separately.

temperature in the IC higher than 6700 K, alloying with
light elements, and grain boundaries. The impact of the
latter can be dramatic [2,28].

The time scale of the hydrodynamic relaxation might
have implication for the DAC experiments. In some of
these experiments very low melting temperatures have
been measured, much lower than in shock-wave experi-
ments. The time scales of these experiments are very
different. It is possible that the regime of dynamic recrys-
tallization might have been erroneously considered as a
melting [29] in DAC experiments. The L? dependence of
the time required for the hydrodynamic processes in solid
allows us to estimate that if the time scale of measurements
in DAC is larger than = 107* s, the results of these mea-
surements might be due to movements caused by yielding
related to the shear softening. However, if the heating is
performed by the so-called pulsed method [30] on a time
scale of 107% s, melting will not be confused with the shear
flow.

Concluding, we want to emphasize that our study was
performed in the true spirit of computer experimental
work. We synthesized the required sample, subjected it to
shear, and recorded the measurements. Having insight into
the details unparalleled in any other approach, we have
been able to explain the softening of iron, and this may
explain the low shear modulus of the material in Earth’s
inner core.
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Swedish National Infrastructure for Computing (SNIC).
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