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Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime

and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in

the procedure of ab initio molecular dynamics using the Langevin equation based on density functional

theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of

electronic structures of the materials with very wide density and temperature can be described, which

covers a full range of WDM up to high energy density physics. A unified first principles description from

condensed matter to ideal ionized gas plasma is constructed.
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Warm dense matter (WDM), characterized by near or
above a solid density and temperature up to 100 eV, is
extremely important in shock compression [1], laser or
other radiation pulse heating of solid targets [2,3], and
astrophysics [4], etc. This matter is partially dissociated,
ionized, degenerate, and strongly coupled [5], raising a big
challenge in theory to describe the properties of the matter.
In this temperature-density regime, semiclassical methods
such as Thomas-Fermi molecular dynamics (TFMD) [6],
orbital-free molecular dynamics (OFMD) [7], and average
atoms molecular dynamics (AAMD) [8], are still far from a
regime that is assumed valid. The path integral
Monte Carlo method (PIMC) [9,10] is now only applied
for the simple elements of H and He. Further, the most
widely used database at present, the SESAME table [11], is
a patchwork using different methods in the warm dense
region. However, the huge demands in experiments, astro-
physics, and a lot of other fields require much more accu-
rate results for all elements under extreme conditions.
Quantum molecular dynamics (QMD), without requiring
any assumption about the potential between atoms, sup-
plies a powerful and accurate tool in this regime [4,12–14].
In principle, QMD can describe the matter at any tempera-
ture. However, the application of QMDmethod has been so
far limited to low temperature (usually less than a few
10 eV) mainly because of expensive computational cost,
the treatment of core electrons of elements in pseudopo-
tentials (PPs) in ab initio code, and insufficient numerical
accuracy and convergence [6] in the procedure of QMD.
Therefore, it is ultimately necessary to solve these prob-
lems and extend QMD into higher temperature and density.

With the development of supercomputers and an effi-
cient QMD [15–17] method, the problems of computa-
tional cost and core electrons can be overcome.
Moreover, core states in the PPs can be introduced to treat
ionization at high temperature [18], and the temperature
can be extended to 170 eV for dense hydrogen at 80 g=cm3

[19]. It is, however, very difficult to apply them to matters
at higher temperature around solid density and more com-

plicated elements such as Fe. It is obvious that an adequate
treatment of the electron-ion collision is the key for de-
scribing the high temperature system. Generally, the sub-
sequent interaction between the electrons and ions is a
nonadiabatic effect. In traditional QMD, this interaction
is described by the static potentials, losing the information
of the dynamical collisions because of the assumption of
Born-Oppenheimer approximation. Based on this descrip-
tion, the thermal equilibrium cannot be reached completely
at high temperature, suggesting that there should be new
physics we have not considered here. In fact, with the
increase of temperature, more and more electrons would
be delocalized or become free. The time scale of their
motions is much less than that of ions, causing many times
collisions in one QMD time step. Therefore, within adia-
batic framework, the effect of the average electron-ion
collisions is of essential and cannot be neglected. Also,
the relaxation of the electrons and ions can introduce a
significant coupling, which definitely affects the ionic and
electronic structures of WDM. This lost physics makes it
difficult to describe the dynamical process using QMD in a
numerical scale. In order to resolve this issue, here we bor-
row the idea of Brownian motion, and introduce electron-
ion collisions induced friction (EI-CIF) to describe the
intrinsic dynamics within adiabatic framework at high
temperature up to high energy density physics (HEDP).
In the regime of WDM, matter consists of a plasma

where ions are in a liquidlike or gaslike environment. An
ion with mass MI moves in a dense electronic medium
(mass me), generating friction and random collisions, i.e.,
EI-CIF, similar to the motion of Brownian particles. The
equation of motion is the Langevin equation (LE) and the
corresponding equation for the probability is the Fokker-
Planck equation (FPE), and the friction coefficient in LE
and FPE is the same one. On the one hand, from FPE, the
transport properties in dense plasma can be obtained. The
energy relaxation and optical absorption can also be inves-
tigated by studying the detailed electron-ion collisions
[20–22]. On the other hand, from the viewpoint of LE,
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the thermodynamic properties can be investigated at the
thermal equilibrium state without knowing the nonadia-
batic collisional details. Considering small mass of elec-
trons relative to ions, the linear LE for the ions regarding to
the ratio of mass me=MI can be taken here:

MI
€RI ¼ F� �MI

_RI þNI: (1)

Where F is the force calculated in density functional theory
(DFT), � is a Langevin friction coefficient, RI is the
position of ions, and NI is a Gaussian random noise
corresponding to �. This ab initio molecular dynamics
model based on LE is so-called quantum Langevin mo-
lecular dynamics (QLMD). Choosing an appropriate fric-
tion coefficient �, i.e., the noise, is the key point in LE,
which affects the dynamical properties and equilibration
efficiency. Here, � contains three parts: the first one is the
contribution of electron-ion collisions. For simplification,
the EI-CIF can be estimated by the assumption of Rayleigh
model [23], i.e.,

�B ¼ 2�
me

MI

Z�
�
4�ni
3

�
1=3

ffiffiffiffiffiffiffiffiffi
kBT

me

s
; (2)

where ni is the ionic number density, and Z� is the average
ionization degree. Here, �B locates generally in the area of
0.000 01 to 0.01 atomic units (a.u.). The second part is the
contribution of thermostat, which is an adjuster for the
temperature in canonical ensemble calculation, �a. And
the third one is the contribution of force errors in the
efficient QLMD (see details in Ref. [16]), �f. In numerical

process, these three parts can be combined to the total
friction coefficient � ¼ �B þ �a þ �f. In fact, the values

of the intrinsic friction coefficient �f and �a do not need to

be known but can be bootstrapped by taking a cue from the
previous work [15,16]. In this work, we choose the con-
vergent threshold from 10�6 to 10�4 in all cases with the
increase of temperature (see Ref. [16]), which can ensure
enough accuracy for all properties.

This method is performed based on the QUANTUM

ESPRESSO package [24]. To verify our approach, the equa-

tion of state (EOS) of iron on the principal Hugoniot up to
1000 eV [at the temperature-density of (0.1 eV, 10 g=cm3),
(1 eV, 13:26 g=cm3), (5 eV, 18:71 g=cm3), (10 eV,
22:5 g=cm3), (100 eV, 34:5 g=cm3), and (1000 eV,
39:65 g=cm3)], and of hydrogen along the 80 g=cm3 iso-
chore up to 1000 eVare calculated. These objects cover full
range of WDM, and they are typical and essential in many
fields [5]. These corresponding states are strongly or mod-
erately coupled and partially degenerate [25].

In our calculations, for Fe, PPs with 16 (below 1000 eV)
and 24 (at 1000 eV) electrons in the valence [26] are used;
For H, a Coulombic pseudopotential is used [26] consid-
ering the much dense medium [19]. For the sensitivity of
pressure to the plane wave cutoff energy, after carefully
testing, enough cutoff for energy is used [27]. All calcu-
lations are carried out based on the framework of finite
temperature DFT [28] within generalized-gradient ap-

proximation (GGA) [29]. The influence of finite tempera-
ture exchange-correlation (xc) functional is not performed
[19]. The systems containing 54 Fe atoms below T ¼
100 eV, 4 Fe atoms at 1000 eV, and 256 H atoms are
introduced. More atoms were tested but no difference
was found. At 1000 eV, the electron de Broglie wavelength
is only about 1 a.u.; therefore, a supercell with about 3 a.u.
length (including 4 Fe atoms) is used, which contains
enough information for the electronic dynamical proper-
ties. Ionic structures are generated using the � point for the
representation of the Brillouin zone, while more k points
were tested without significant effect. For Fe, the time step
is 1 fs at the temperature less than 100 eV, 0.5 fs at 100 eV,
and 0.25 fs at 1000 eV. Each temperature point was simu-
lated for at least 1 ps time length for thermal equilibrium,
and 500 time steps for picking up the ensemble information
such as pressure and ionic positions after thermalization.
(For hydrogen, see details in Ref. [19].) Enough band
energy corresponding to unoccupied bands are considered
to make it higher than at least 8kBT. With these choices, a
total pressure converged to 1%–2%, and all cases can be
completed within 10 days using 16 to 128 processors.
Iron is the most important element in the earth, but

complicated to deal with in theory. Its EOS is under debate
until now since different models give rise to very different
results. QMD is considered to be more reliable, but pre-
vious QMD calculation without consideration of dynami-
cal electron-ion collisions can only give the results at low
temperature (T � 5 eV) because of numerical difficulty
[6], caused by the lost dynamical ion-electron interactions.
At the same time, the semiclassical approach cannot give
the accurate EOS at relatively low temperatures where the
shell and xc effects are dominant [6,7]. Using QLMD, the
principal Hugoniot of Fe up to 1000 eV is calculated from
first principles. First, the influence of friction coefficient is
tested, as shown in Fig. 1(a). After thermalization, testing
for a time length of 0.5 ps, it is obvious that when 0:0005 �
� � 0:05, the pressure of the system is convergent, but for
smaller or larger �, the pressure is dispersed. In this case,
�B ¼ 0:001, which is a good value to keep the right
information and computational efficiency. Here, too small
� cannot capture the EI-CIF, and too large � destroys the
dynamical properties of the system. Only when the � is in
an appropriate range, both the collisions and the dynamical
properties can rightly be kept. The pressures along the
principal Hugoniot at present are much better than the
results of semiclassical methods, as shown in Fig. 1(b),
especially at relatively low temperature. At 0.1 eV, the spin
polarization might be important, and therefore, the pres-
sure considering electronic spin is a little higher than that
of the SESAME table, and much higher than the pressure
obtained without spin polarization. When temperature is
higher, the contribution from spin polarization can be
neglected. The 3s and 3p electrons in Fe play important
roles when T � 1 eV, where the average ionization degree
is very close to 8 from the AA model [30]. Therefore, our
results are a little higher than the previous QMD calcula-
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tion. Above T ¼ 100 eV, the pressures using different
models are in good agreement with each other, indicating
our approach can extend the first principles method into the
Thomas-Fermi regime.

For hydrogen at the density of 80 g=cm3, and tempera-
ture of T ¼ 800 eV (partially degenerate), when empty
band energy is higher than 8kBT, pressure and energy go
convergent within 1% difference, and the pressure-
temperature curve is also consistent with that using QMD
and OFMD [19] and Kerley table [31], shown in Fig. 2(a).
OFMD is accurate here because there is no shell effect for
H and the very dense medium leads pressure delocaliza-
tion, but far from SESAME table and QMD results for Fe
as in Fig. 1. Furthermore, QLMD will not decrease the
dynamical properties. As shown in Figs. 2(b) and 2(c), the
radial distribution functions (RDF) at T ¼ 5 eV and T ¼
172 eV using QLMD are in good agreement with those of
one-component plasma (OCP) and QMD [19]. More re-
sults calculated by QLMD can be found in Ref. [25].

The figure of change of the electronic structures of dense
matter over wide range of temperature is too complicated
to be known accurately [32] since there is no good theo-
retical model before. Using denser 2� 2� 2 k points, the
electronic properties can be shown clearly. The typical
electronic projected density of states (PDOS) and charge
density distribution at different temperature-density states
are shown in Figs. 3 and 4, respectively. It is interesting to
find that the process of electronic delocalization and orbital
mixing with the increase of density and temperature. In
particular, the electronic delocalizing and mixing for 3s,
3p, and 3d orbitals are more and more obvious, which
causes large changes in the compressibility and tempera-
ture [32] along the Hugoniot curve. At the temperature of
1000 eV, 3s, 3p, and 3d orbitals are totally mixed. All
electrons except in 1s, 2s, and 2p orbitals are becoming
free electrons, and the corresponding distribution of elec-
trons, as shown in Figs. 3(e) and 3(f), is clearly the discrete
energy levels of bound electrons and the Maxwell-
Boltzmann (MB) distribution of free electrons. The MB

free electrons are consistent with the large electron degen-
eracy parameter (about 5.4) and the matter at this tempera-
ture and density is an ideal ionized gas plasma. At this
regime, the coupling of the electronic structure and the
ionic space motion is not very strong and the ionization
balance can be described well by the so-called Saha-
Boltzmann formalism [33]. It can be seen that the distri-
bution of free electrons shows more and more ‘‘uniform,’’
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indicating the decoupling of free electrons from the ionic
motion. In Fig. 4, the electrons are more and more delo-
calized with the increase of temperature and density. In the
beginning, at low temperature and low density, the elec-
trons located around the ions. But at high temperature and
high density, they are more and more ‘‘free.’’ Comparing
the charge density at 34:5 g=cm3 between zero tempera-
ture (crystalline structure) and 100 eV, shown in Figs. 4(c)
and 4(d), the contribution of temperature to the electron
delocalization is obvious.

In conclusion, the electron-ion collisions are taken as the
damping effect (noisy effect) in QLMD. Based on QLMD,
we smoothly make the transition between cold dense mat-
ter to HEDP going through the warm dense matter regime.
It is a real breakthrough in the field of ab initio simulations
and very complementary to the average-atom model. Also,
based on the first principles calculations, accurate changes
of the electronic properties, electronic conductivity [12],
optical properties such as x-ray absorption [14], EOS of
dense matters from low to high temperatures can be
known, which have been shown to be very effective and
really important in a lot of fields.
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