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We present a set of Bell inequalities which are sufficient and necessary for separability of general pure

multipartite quantum states in arbitrary dimensions. The relations between Bell inequalities and distil-

lability are also studied. We show that any quantum states that violate one of these Bell inequalities are

distillable.
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Introduction.—One of the most remarkable aspects of
quantum theory is the incompatibility of quantum non-
locality with local-realistic theories. The Bell inequalities
[1] impose constraints on the correlations between mea-
surement outcomes on two separated systems, giving rise
to the limits for what can be described within the frame-
work of any local hidden variable theory. They are of great
importance for understanding the conceptual foundations
of quantum theory as well as for investigating quantum
entanglement, as Bell inequalities can be violated by quan-
tum entangled states. One of the most important Bell
inequalities is the Clauser-Horne-Shimony-Holt (CHSH)
inequality [2] for two-qubit systems. It is then generalized
to the N-qubit case, known as the Mermin-Ardehali-
Belinskii-Klyshko (MABK) inequality [3]. A set of multi-
partite Bell inequalities has been elegantly derived in terms
of two dichotomic observables per site [4], which includes
the MABK inequality as a special case [5] and can detect
some entangled states that the MABK inequality fails to
detect. In [6] another family of Bell inequalities for
N-qubit systems has been introduced, which is maximally
violated by all the Greenberger-Horne-Zeilinger states.

In fact, Gisin presented a theorem in 1991. It says that
any pure entangled two-qubit states violate the CHSH
inequality [7]. Namely the CHSH inequality is both suffi-
cient and necessary for separability of two-qubit states.
Soon after, Gisin and Peres provided an elegant proof of
this theorem for the case of pure two-qudit systems [8]. In
[9] Chen et al. showed that all pure entangled three-qubit
states violate a Bell inequality. Nevertheless generally it
still remains open whether the Gisin’s theorem can be
generalized to the N-qudit case or not.

The Bell inequalities are also useful in verifying the
security of quantum key distribution protocols [10].
There is a simple relation between nonlocality and distil-
lability: if any two-qubit [11] or three-qubit [12] pure or
mixed state violates a specific Bell inequality, then the state
must be distillable. In [13] Dür has shown that for the case
N � 8, there exist N-qubit bound entangled (not distilla-
ble) states which violate some Bell inequalities. However,
Acı́n has demonstrated that for all states violating the

inequality, there exists at least one kind of bipartite decom-
position of the system such that a pure entangled state can
be distilled [14,15]. But generally it is still an open prob-
lem if violation of a Bell inequality already implies
distillability.
In this paper, we present a set of Bell inequalities which

can be shown to be both sufficient and necessary for
separability of general pure multipartite quantum states
in arbitrary dimensions, thus proving the Gisin’s theorem
generally. We also show that pure entangled states can be
distilled from quantum mixed states that violate one of
these Bell inequalities.
Bell inequalities for bipartite quantum systems.—For

two-qubit quantum systems, the Bell operators are defined
by

B ¼ A1 � B1 þ A1 � B2 þ A2 � B1 � A2 � B2; (1)

where Ai ¼ ~ai � ~�A ¼ axi �
x
A þ ayi �

y
A þ azi�

z
A, Bj ¼

~bj � ~�B ¼ bxj�
x
B þ byj�

y
B þ bzj�

z
B, ~ai ¼ ðaxi ; ayi ; azi Þ, and

~bj ¼ ðbxj ; byj ; bzjÞ are real unit vectors satisfying j ~aij ¼
j ~bjj ¼ 1, i; j ¼ 1; 2, �x;y;z

A=B are Pauli matrices. The CHSH

inequality says that if there exist local hidden variable
models to describe the system, the inequality

jhBij � 2 (2)

must hold.
Instead of a two-qubit (2� 2) system, we first consider

general N �M bipartite quantum systems in vector space
HAB ¼ HA �HB with dimensions dim HA ¼ M
and dim HB ¼ N respectively. We aim to find Bell in-
equalities like (2) such that any quantum entangled states
would violate a Bell inequality.
Let LA

� and LB
� be the generators of special unitary

groups SOðMÞ and SOðNÞ, respectively. The MðM�
1Þ=2 generators LA

� are given by fjjihkj � jkihjjg, 1 � j <
k � M, where jii, i ¼ 1; . . . ;M, are the usual orthonormal
basis of HA. LB

� are similarly defined. The matrix opera-

tors L� (respectively, L�) have M� 2 (respectively, N �
2) rows and M� 2 (respectively, N � 2) columns that are
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identically zero. We define the operators A�
i (respectively,

B�
j ) from L� (respectively, L�) by replacing the four

entries on the positions of the nonzero two rows and two
columns of L� (respectively, L�) with the corresponding

four entries of the matrix ~ai � ~� (respectively, ~bj � ~�), and

keeping the other entries of A�
i (respectively, B�

j ) zero. We

define the Bell operators to be

B ��¼ ~A�
1 � ~B�

1 þ ~A�
1 � ~B�

2 þ ~A�
2 � ~B�

1 � ~A�
2 � ~B�

2 ; (3)

where ~A�
i ¼ L�A

�
i L

y
�, ~B

�
j ¼ L�B

�
j L

y
�, and i; j ¼ 1; 2.

Theorem 1.—Any bipartite pure quantum state is en-
tangled if and only if at least one of the following Bell
inequalities is violated:

jhB��ij � 2; (4)

where � ¼ 1; 2; � � � ; MðM�1Þ
2 , � ¼ 1; 2; � � � ; NðN�1Þ

2 .

Proof.—Assume that the state jc i violates one of the
Bell inequalities in (4); i.e., there exist �0 and �0 such that
jhB�0�0

ij> 2. Then equivalently one has that the state

jc i�0�0
¼ LA

�0
�LB

�0
jc i

kLA
�0
�LB

�0
jc ik violates the CHSH inequality in

(2). As the local operation LA
�0

� LB
�0

does not change the

separability of a state, jc i must be entangled.
Now assume that jc i 2 HAB is an entangled state.

We prove that at least one of the Bell inequalities in (4) is
violated. Set � ¼ jc ihc j. By projecting jc i onto 2� 2
subsystems [16], we get the following pure states:

��� ¼ LA
� � LB

��ðLA
�Þy � ðLB

�Þy
kLA

� � LB
��ðLA

�Þy � ðLB
�Þyk

; (5)

where � ¼ 1; 2; � � � ; MðM�1Þ
2 ; � ¼ 1; 2; � � � ; NðN�1Þ

2 ; and

kXk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðXXyÞ

p
. Here ��� are pure states with rank

one. As the matrix LA
� � LB

� has MN � 4 rows and MN �
4 columns that are identically zero, there are at most 4�
4 ¼ 16 nonzero elements in the matrix ���. The states ���

are called ‘‘two-qubit’’ states in this sense.

The concurrence of jc i is defined by Cðjc iÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1� Trð�2

AÞ�
q

with �A ¼ TrBð�Þ the reduced density

matrix of � by tracing over the subsystem B [17]. A pure
quantum state jc i can be generally expressed as jc i ¼P

M
i¼1

P
N
j¼1 aijjiji, aij 2 C, in the computational basis jii

and jji of HA and HB, respectively, i ¼ 1; . . . ;M and
j ¼ 1; . . . ; N. Therefore the concurrence can be expressed
as

Cðjc iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
�¼1

XN
�¼1

jCð���Þj2
vuuut ; (6)

where ��� are defined in (5). Since we have assumed that

jc i is an entangled quantum state, Cðjc iÞ must be not
zero; i.e., at least one of the ���, say ��0�0

, has nonzero

concurrence, Cð��0�0
Þ> 0. As we have discussed above,

��0�0
is actually a ‘‘two-qubit’’ quantum pure state. It has

been shown in [7,8] that an entangled two-qubit pure state
must violate the Bell inequality (2). Therefore the inequal-
ity jhB�0�0

ij � 2 is violated.

Bell inequalities for multipartite quantum systems.—We
now generalize the results above to multipartite quantum
systems. For convenience we consider that all the subsys-
tems have the same dimensions. However, as can be seen
from the following, our discussions also apply to multi-
partite quantum systems with different dimensions.
Let H denote a d-dimensional vector space with basis

jii; i ¼ 1; 2; . . . ; d. An L-partite pure state in H � � � � �H
is generally of the form

j�i¼ Xd
i1;i2;���iL¼1

ai1;i2;���iL ji1;i2;���iNi;ai1;i2;���iL 2C: (7)

Let � and �0 (respectively, � and �0) be subsets of the
subindices of a, associated to the same subvector spaces
but with different summing indices. � (or �0) and � (or �0)
span the whole space of the given subindix of a. A possible
combination of the indices of � and � can be equivalently
understood as a kind of bipartite decomposition of the L
subsystems, say part A and part B, containing m and n ¼
L�m subsystems, respectively.
For a given bipartite decomposition, we can use the

analysis similar to the bipartite case. Let LA
� and LB

� be

the generators of special unitary groups SOðdmÞ and
SOðdnÞ. By projecting j�i onto 2� 2 subsystems we
have the ‘‘two-qubit’’ pure states:

�p
�� ¼ LA

� � LB
��ðLA

�Þy � ðLB
�Þy

kLA
� � LB

��ðLA
�Þy � ðLB

�Þyk
; (8)

where � ¼ 1; 2; � � � ; dmðdm�1Þ
2 ; � ¼ 1; 2; � � � ; dnðdn�1Þ

2 , p la-

bels the bipartite decompositions of the L subsystems.
For every pure state �p

�� we define the corresponding

Bell operators

B p
��¼ ~A�

1 � ~B�
1 þ ~A�

1 � ~B�
2 þ ~A�

2 � ~B�
1 � ~A�

2 � ~B�
2 ; (9)

where ~A�
i ¼ LA

�A
�
i ðLA

�Þy and ~B�
j ¼ LB

�B
�
j ðLB

�Þy are the

Hermitian operators similarly defined as in (3).
Theorem 2.—Any multipartite pure quantum state is

entangled if and only if at least one of the following
inequalities is violated:

jhBp
��ij � 2: (10)

Proof.—Obviously, multipartite quantum states that vio-
late any one of the Bell inequalities in (10) must be
entangled.
We now prove that, for any entangled multipartite pure

quantum state, at least one of the inequalities in (10) is
violated. The concurrence of j�i is given by [18]
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CL
d ðj�iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
X
p

Xd
f�;�0;�;�0g

ja��a�0�0 � a��0a�0�j2
vuuut ; (11)

where K ¼ d=2mðd� 1Þ, m ¼ 2L�1 � 1,
P

p stands for

the summation over all possible combinations of the in-
dices of � and �. (11) can be rewritten as

CL
d ðj�iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
X
p

X
��

½Cð�p
��Þ�2

s
; (12)

where �p
�� are defined in (8). As j�i is an entangled state,

Cðj�iÞmust be not zero; i.e., at least one of �p
��, say �

p0

�0�0
,

has nonzero concurrence. As we have discussed above,
�p0

�0�0
is actually a two-qubit quantum pure state. An en-

tangled two-qubit quantum pure state must violate the Bell
inequality (2).

As an example, we consider three-qubit systems. In [19],
Acin, etc., have verified that any pure three-qubit state j�i
can be uniquely written as

j�i ¼ �0j000i þ �1e
ic j100i þ �2j101i þ �3j110i

þ �4j111i; (13)

where �i � 0, 0 � c � �,
P

i�
2
i ¼ 1. From straightfor-

ward computation one has

C2ðj�iÞ¼2ð�0�2Þ2þ2ð�0�4Þ2þj2eic�1�4�2�2�3j2
þ2ð�0�3Þ2þ2ð�0�4Þ2þj2eic�1�4�2�2�3j2
þ2ð�0�2Þ2þ2ð�0�3Þ2þ2ð�0�4Þ2:

We give a detailed analysis on that an entangled pure three-
qubit state, i.e., at least one of the terms in the right-hand
side of (14) is nonzero, must violate one of the inequalities
in (10).

Case 1.—If �0�2 � 0, the corresponding operator

LA
2 � LB

1 ¼
0 0 1 0
0 0 0 0
�1 0 0 0
0 0 0 0

0
BBB@

1
CCCA � 0 1

�1 0

� �

and

�12j3
21 ¼

�2
2 �e�ic�1�2 0 0 0 �0�2 0 0

�eic�1�2 �2
1 0 0 0 �eic�0�1 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

�0�2 �e�ic�0�1 0 0 0 �2
0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

Choose the Bell operator in (9) to be the one with respect to
the bipartite decomposition of the first two qubits and the
last one,

B 12j3
21 ¼ ~A2

1 � ~B1
1 þ ~A2

1 � ~B1
2 þ ~A2

2 � ~B1
1 � ~A2

2 � ~B1
2;

(14)

where ~A2
k ¼ LA

2A
2
kðLA

2 Þy, ~B1
l ¼ LB

1B
1
l ðLB

1 Þy, and

A2
k ¼

�a3k 0 a1k þ a2ki 0
0 0 0 0

a1k � a2ki 0 a3k 0
0 0 0 0

0
BBB@

1
CCCA;

B1
l ¼ �b3l b1l þ b2l i

b1l � b2l i b3l

� �
;

k; l ¼ 1; 2; we have the maximal violation of the inequality

(10), 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

0�
2
2=ð�2

0 þ �2
1 þ �2

2Þ2
q

> 2.

Case 2.—If jeic�1�4 � �2�3j � 0, the corresponding
operator

LA
6 � LB

1 ¼
0 0 0 0
0 0 0 0
0 0 0 1
0 0 �1 0

0
BBB@

1
CCCA:

The matrix �12j3
61 has only nonzero entries at the right down

corner with the form,

�2
4 ��3�4 ��2�4 e�ic�1�4

��3�4 �2
3 �2�3 �e�ic�1�3

��2�4 �2�3 �2
2 �e�ic�1�2

eic�1�4 �eic�1�3 �eic�1�2 �2
1

0
BBB@

1
CCCA:

The Bell operator in (9) has the form,

B 12j3
61 ¼ ~A6

1 � ~B1
1 þ ~A6

1 � ~B1
2 þ ~A6

2 � ~B1
1 � ~A6

2 � ~B1
2;

(15)

where ~A6
k ¼ LA

6A
6
kðLA

6 Þy, ~B1
l ¼ LB

1B
1
l ðLB

1 Þy, and

A6
k ¼

0 0 0 0
0 0 0 0
0 0 �a3k a1k þ a2ki
0 0 a1k � a2ki a3k

0
BBB@

1
CCCA;

B1
l ¼ �b3l b1l þ b2l i

b1l � b2l i b3l

� �
;

k; l ¼ 1; 2. The corresponding maximal violation is given

by 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jeic�1�4 � �2�3j2=ð�2

1 þ �2
2 þ �2

3 þ �2
4Þ2

q
,

which is obviously strictly larger than 2. Other cases can
be discussed similarly.
Bell inequalities and distillation.—A bipartite state � is

called distillable, if maximally entangled bipartite pure
states, e.g., j�þi ¼ 1ffiffi

2
p ðj00i þ j11iÞ, can be created from

a number of identical copies of the state � by means of
local operations and classical communication. We call a
multipartite state distillable, if and only if there exists at
least one bipartite decomposition of the system such that
pure entangled states can be distilled. It has been shown
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that all quantum entangled pure states are distillable.
However it is a challenge to give an operational criterion
of distillability for general mixed states. In [16] a sufficient
condition of distillability has been presented. Our inequal-
ities (10) are both sufficient and necessary for separability
of pure states, but generally not for separability of mixed
ones. However surprisingly (10) can be served as criterion
for distillability.

Theorem 3.—Any bipartite quantum state � that violates
any one of the Bell inequalities in (4), i.e. TrfB���g> 2, is

always distillable. And if a multipartite quantum state �
violates one of the Bell inequalities in (10), i.e., � satisfies
TrfBp

���g> 2, then bipartite maximally entangled pure

states can be distilled from the copies of �.
Proof.—It was shown in [20] that a density matrix � is

distillable if there are some projectors P, Q that map high
dimensional spaces to two-dimensional ones such that the
state P �Q��sP �Q is entangled for some s copies. Thus
if any one of the Bell inequalities in (4) is violated, there
exists a submatrix ���, like (5), that has nonzero concur-

rence. For generally given operator L� ¼ jiihjj � jjihij,
L� ¼ jkihlj � jlihkj, the operators P, Q can be explicitly

given by P ¼ AL�, Q ¼ BL�, where A ¼ j0Aihijþ
j1Aihjj, B ¼ j0Bihkj þ j1Bihlj, j0A=Bi, and j1A=Bi are the

orthonormal bases of a two-dimensional vector space. P �
Q maps state � to a two-qubit one that has the same
nonzero concurrence as ���. Since any entangled two-

qubit state is distillable, � is distillable. The multipartite
case can be discussed similarly.

Remark.—It has been shown thatpositive partial trans-
position (PPT) entangled quantum states are not distillable
[21]. Therefore PPT quantum states should never violate
the Bell inequalities in (4) or (10). This fact can be seen
from the following. A density matrix � is called PPT if the
partial transposition of � with respect to any subsystem(s)
is still positive. Let �TB denote the partial transposition
with respect to the subsystemB. Assume that there is a PPT
state � violating one of the Bell inequalities in (10), say
TrfBp0

�0�0
�g> 2. This can be equivalently understood as

that there exists two-qubit state �p0

�0�0
in the form of (8)

such that TrfBp0

�0�0
�
p0

�0�0
g> 2, where B

p0

�0�0
¼ A

�0

1 �
B�0

1 þ A�0

1 � B�0

2 þ A�0

2 � B�0

1 � A�0

2 � B�0

2 . One the other

hand, by using the PPT property of �, we have

�TB

�0�0
¼ LA

�0
� ðLB

�0
Þ��TBðLA

�0
Þy � ðLB

�0
ÞT � 0: (16)

As both LA
�0

and LB
�0

are projectors to two-dimensional

subspaces, �
p0

�0�0
can be considered as a 2� 2 state. While

a 2� 2 PPT state ��0�0
must be separable [22], it contra-

dicts with TrfBp0

�0�0
�
p0

�0�0
g> 2.

Conclusions and remarks.—In conclusion, we have de-
rived a series of new Bell inequalities for both bipartite and

multipartite quantum states by projecting the whole quan-
tum systems to ‘‘two-qubit’’ subsystems. We show that
quantum states violating any one of these Bell inequalities
are entangled. On the other hand, we have proved that any
entangled pure quantum states must violate at least one of
these Bell inequalities. Thus the Gisin theorem for general
multipartite quantum systems has been proved. We have
also shown that quantum states that violate the Bell in-
equalities must be distillable, which helps on measurable
determination of quantum entanglement experimentally.
This work is supported by the NSFC 10875081,
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