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Supersolid phases, in which a superfluid component coexists with conventional crystalline long range

order, have recently attracted a great deal of attention in the context of both solid helium and quantum spin

systems. Motivated by recent experiments on 2H-AgNiO2, we study the magnetic phase diagram of a

realistic three-dimensional spin model with single-ion anisotropy and competing interactions on a layered

triangular lattice, using classical Monte Carlo simulation techniques, complemented by spin-wave

calculations. For parameters relevant to experiment, we find a cascade of different phases as a function

of magnetic field, including three phases which are supersolids in the sense of Liu and Fisher. One of these

phases is continuously connected with the collinear ground state of AgNiO2, and is accessible at relatively

low values of magnetic field. The nature of this transition, and its possible observation, are discussed.
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Solids and liquids are very different. Placed under stress,
a liquid will flow, while a solid resists deformation. The
idea of a supersolid, a state which combines the properties
of a solid with those of a perfect, nondissipative superfluid,
seems therefore to fly in the face of common sense. None
the less, the proposal that a supersolid might occur through
the Bose-Einstein condensation of vacancies in a quantum
crystal [1], was propelled to the center of debate by recent
experiments on 4He [2].

A radically different approach to supersolids was initi-
ated by Liu and Fisher [3], who realized that quantum
magnets could support states which break the translational
symmetry of the lattice (and are therefore solids) while
simultaneously breaking spin-rotational symmetry within a
plane, a form of order analogous to a superfluid. It is now
well established that models of two-dimensional frustrated
magnets with anisotropy can support such supersolid states
[4]. Moreover, since a spin-1=2 quantum magnet is in one-
to-one correspondence with hard-core bosons, these super-
solids might also be realized using cold atoms on optical
lattices. Nonetheless, candidates for supersolid states
among real, three-dimensional magnets remain scarce.
An interesting system in this context is the triangular
easy-axis magnet, 2H-AgNiO2 [5].

AgNiO2 is a very unusual material, built of stacked, two-
dimensional nickel-oxygen planes, held together by silver
ions. It combines metallicity and magnetism, with the
magnetic ions in each plane forming a perfect triangular
lattice, nested within a honeycomb network of conducting
sites [5]. In the absence of magnetic field AgNiO2 supports
a stripelike collinear antiferromagnetic ground state, illus-
trated in Fig. 1(a). Recently, AgNiO2 has been shown to
undergo a complicated set of phase transitions as a function
of magnetic field [6]. Of particular interest is the transition
out of the collinear ground state at low temperatures.

In applied magnetic field, collinear antiferromagnets
with easy-axis anisotropy typically undergo a first-order
‘‘spin-flop’’ transition into a canted state, at a critical field

which is broadly independent of temperature. However, the
low-field transition in AgNiO2 is accompanied by a rela-
tively broad feature in specific heat, does not exhibit
marked hysteresis, and occurs at progressively higher
fields as temperature increases. None of these features
resemble a typical spin-flop transition, and together they
raise the question of whether a novel type of magnetic
order is realized in AgNiO2 under field.
In this Letter we explore the different phases that occur

as a function of magnetic field in a simple effective spin
model already shown to provide excellent fits to inelastic
neutron scattering spectra for AgNiO2 [7]. We show that
the collinear ground state of this model does not undergo a
conventional spin flop, but rather a Bose-Einstein conden-
sation of magnetic excitations which converts it into a state
that is a supersolid in the sense of Liu and Fisher. We also
identify two magnetization plateaux, and two further
supersolid phases at high field.
The model we consider is the Heisenberg model on a

layered triangular lattice, with competing antiferromag-
netic first- and second-neighbor interactions J1 and J2,

FIG. 1 (color online). (a) Low-field collinear stripe phase with
spins aligned along the magnetic easy axis (z axis). (b) Related
supersolid phase for magnetic field parallel to the easy axis:
down spins cant into the plane perpendicular to field, while up
spins remain aligned with the field. (c) First neighbor J1, second
neighbor J2, and interlayer interactions J? for a stacked trian-
gular lattice.
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single-ion anisotropy D and interlayer coupling J?
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[cf. Fig. 1(c)]. For concreteness, we set J1 ¼ 1, J2 ¼ 0:15,
J? ¼ �0:15 andD ¼ 0:5, measuring magnetic field h and
temperature T in units of J1. These are ratios of parameters
comparable to those used to fit inelastic neutron scattering
spectra for AgNiO2 [7]. Like AgNiO2, in the absence of
magnetic field, this model exhibits a collinear stripelike
magnetic ground state, illustrated in Fig. 1(a). The stripes
have three possible orientations, and so break a Z3 rota-
tional symmetry of the lattice. The collinear stripe state
also breaks translational symmetry in the direction perpen-
dicular to the stripes. But in the presence of a magnetic
easy axis, it does not break spin-rotation symmetry.

This collinear stripe state supports two branches of spin-
wave excitations, which are gapped, and degenerate in the
absence of magnetic field. However, for parameters rele-
vant to AgNiO2, the dispersion minimum does not occur at
the magnetic ordering vectorM, as would be expected, but
rather at points M0 related by the broken Z3 rotational
symmetry [7].

Applying a magnetic field parallel to the easy axis lifts
the degeneracy of the two spin-wave branches, and
reduces the gap at M0. Within linear spin-wave theory,
neglecting dispersion in the out-of-plane direction and

expanding about a stripe state with ordering vector M ¼
ð0; 2�= ffiffiffi

3
p Þ, we find
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and the spin gap atM0 ¼ ð��;�=
ffiffiffi
3

p Þ closes completely at
a critical field h ¼ 2DS. The resulting dispersion is shown
in Fig. 2(a).

As in the celebrated example of TlCuCl3, the closing of
this spin gap leads to Bose-Einstein condensation of spin-
wave excitations (magnons) [8]. This Bose-Einstein con-
densate breaks a Uð1Þ spin-rotation symmetry in the Sx-Sy

plane, and so has superfluid character. Since the resulting
state inherits the broken Z2 translational and Z3 rotational
symmetries of the collinear ground state, it is a supersolid.
This quantum phase transition can also be understood at a
mean-field level—instead of undergoing a spin-flop, the
down spins cant, while the up spins remain aligned with the
field. The nature of the new magnetic supersolid is illus-
trated in Fig. 1(b).

These arguments establish the possibility of a supersolid
state in AgNiO2, but tell us nothing about its thermody-
namic properties. If the low-field transition in AgNiO2 is

into a supersolid, why does the critical field increase with
increasing temperature? What might the experimental sig-
natures of this new phase be? What other states might
occur at higher magnetic field, and how do they evolve
with temperature?
In order to address these questions, we have performed

classical Monte Carlo simulations of Eq. (1). We employed
a parallel tempering Monte Carlo scheme [9], combined
with successive over-relaxation sweeps [10]. Simulations
of 48–128 replicas were performed for rhombohedral clus-
ters with periodic boundary conditions, of 3L� 3L� L ¼
9L3 spins, where L ¼ 4, 6, 8, 10 counts the number of
triangular lattice planes. Typical simulations involved 4�
106 steps, half of which were discarded for thermalization.
Each step combines one local-update sweep of the lattice
and two over-relaxation sweeps, with replicas at different
temperatures exchanged every 10 steps. We set jSj ¼ S ¼
1 throughout.
The results of these simulations are summarized in

Fig. 3. For the parameters used, we find a total of six
distinct ordered phases as a function of increasing field:
(i) a collinear stripe ground state with a 2-site unit cell;
(ii) a supersolid phase with a 4-site unit cell; (iii) a collinear
one-third magnetization plateau state with a 3-site unit cell;
(iv) a second supersolid, formed by a 2:1:1 canting of
spins, with the same unit cell as (ii); (v) a collinear half-
magnetization plateau state, with the same unit cell as (ii);
and (vi) a third supersolid, formed by a 3:1 canting of spins
approaching saturation, with the same unit cell as (ii).
Phase transitions were identified using peaks in the rele-
vant order-parameter susceptibilities. These transitions are
generically first order, except between collinear and super-
solid phases with the same unit cell. All of these phases can
also be found in mean-field theory at T ¼ 0, and transitions
between them are shown by open symbols on the h axis of
Fig. 3.
This phase diagram shows some intriguing similarities

with experimental work on AgNiO2 [6]. In particular, the
topology of the low-field phases is correctly reproduced,
with the low-field supersolid phase contained entirely
within the envelope of the collinear stripe phase. The phase

FIG. 2 (color online). (a) Linear spin-wave dispersion of the
collinear stripe phase of Eq. (1) for h ¼ 0 (dashed line) and h ¼
2DS (solid lines) in the kz ¼ 0 plane, for S ¼ 1, J1 ¼ 1, J2 ¼
0:15, J? ¼ �0:15 and D ¼ 0:5. (b) First Brillouin zone for a
triangular lattice, showing the ordering vector M, and related
symmetry points M0. The magnetic Brillouin zones for the
collinear stripe phase and associated supersolid are shown by a
blue rectangle and a red hexagon, respectively.
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transition between these two phases is continuous, and the
critical field increases with increasing temperature [11].
For this reason we now concentrate on the low-field prop-
erties of the model, leaving the rich physics at higher field
for discussion elsewhere. We note, however, that the one-
third magnetization plateau (iii) is well known from studies
of easy-axis triangular lattice antiferromagnets [12], and
that states analogous to the half-magnetization plateau (v)
and high-field supersolids (iv) and (vi) also occur in models
of Cr spinels [13].

As in some previously studied models [4,14], two finite-
temperature phase transitions separate the low-field super-
solid phase from the paramagnet. The first of these is a
first-order transition into the collinear stripe state at a
temperature T � 0:42. The second is a continuous transi-
tion at a critical temperature which varies approximately
linearly with magnetic field from T ¼ 0 (h ¼ 1) to T �
0:3 (h � 2). Both translational and rotational lattice sym-
metries are broken at the upper transition. To study this it is
convenient to introduce a two-component order parameter
based on an irreducible representation of the C3 ffi Z3

rotation group, which measures the orientation of the
‘‘stripes’’ in the plane
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where �1 ¼ ð1; 0Þ and �2 ¼ ð1=2; ffiffiffi
3

p
=2Þ are the primitive

vectors of the triangular lattice. Figures 4(c) and 4(d) show
the behavior of this order parameter, Binder cumulants for
energy, and related susceptibility for h ¼ 1:25, T � 0:42.
The transition is clearly first order; we have checked ex-
plicitly that theZ2 symmetry associated with translations is
broken at the same temperature.
Spin-rotation symmetry in the Sx-Sy plane is broken at

the lower phase transition into the supersolid state. This
can be measured by constructing a Uð1Þ order parameter
which measures the difference between Sx and Sy compo-
nents of the canted down spins, as illustrated in Fig. 4(f).
Figures 4(a) and 4(b) show the behavior of this order
parameter, its Binder cumulants, and related susceptibility
for h ¼ 1:25, T � 0:1. The phase transition remains con-

FIG. 3 (color online). Magnetic phase diagram obtained from
classical Monte Carlo simulation of Eq. (1) for a cluster of 24�
24� 8 spins with J1 ¼ 1, J2 ¼ 0:15, J? ¼ �0:15, D ¼ 0:5.
Temperature T and magnetic field h are measured in units of
J1. Phase boundaries are determined from peaks in order-
parameter susceptibilities. Phase transitions are first order, ex-
cept where shown with a dashed line. A dotted black line shows
the cut at h ¼ 1:25 used in Figs. 4(a), 4(b), and 4(d) and Fig. 5.
Inset shows the range of parameters for which a supersolid arises
as the first instability of the stripe phase in magnetic field, as
determined by mean-field calculations for J? ¼ �0:15.

FIG. 4 (color online). (a) Uð1Þ order parameter showing onset
of supersolid phase for h ¼ 1:25, T � 0:1 (inset: crossing of
associated Binder cumulants). (b) Related order-parameter sus-
ceptibility �Uð1Þ. (c) Z3 order parameter showing onset of col-

linear stripe phase for h ¼ 1:25, T � 0:42 (inset: Binder
cumulants for energy, showing a dip indicative of a bimodal
distribution). (d) Related order-parameter susceptibility �Z3

.

Results from simulations of clusters of 3L� 3L� L spins,
with L ¼ 4, 6, 8, 10, for parameters identical to Fig. 3.
(e) Finite-size scaling of order-parameter susceptibility at tran-
sition into supersolid for h ¼ 1:5, T � 0:2. (f) Graphical repre-
sentation of Uð1Þ order parameter as a vector in the Sx-Sy plane.
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tinuous at finite temperature, with Binder cumulants for
different system size crossing at a single temperature. A
good collapse of susceptibility data is obtained using sus-
ceptibility and correlation length exponents � ¼ 1:32 and
� ¼ 0:67 for the 3D XY universality class, as shown in
Fig. 4(e).

While the relative extent of each phase and details of
critical fields and temperatures are different, AgNiO2 ex-
hibits a similar double transition on cooling: a transition
from paramagnet to a collinear stripe phase at T � 20 K
accompanied by a sharp feature in specific heat and then,
for fields greater than 13.5 T, a continuous or very weakly
first-order transition from the collinear stripe phase into an
unknown low temperature magnetic state. The transition
field into this phase increases with temperature, suggesting
that the stripe phase has higher entropy than the competing
high-field phase, as found in our simulations. Is the high-
field phase in AgNiO2 then a supersolid?

Direct confirmation of the magnetic order at high field
by elastic neutron scattering is challenging, since no large
single crystals are presently available. None the less, it
should be possible to observe the closing of the spin gap on
entry to the supersolid phase [7]. Moreover, both transport
and thermodynamic measurements clearly resolve mag-
netic phase transitions [6]. In Fig. 5 we present predictions
for magnetic torque, � ¼ m� h, and heat capacity Ch,
spanning supersolid, stripe and paramagnetic phases for
h ¼ 1:25. For the ratios of parameters used, with J1 ¼
1:32 meV (cf. [7]), this translates into a field of 12.5 T,
with the supersolid transition occurring at 1.5 K. The heat
capacity anomalies at both transitions strongly resemble
those observed in AgNiO2 [6], and the smooth evolution of
torque entering the supersolid should be contrasted with
earlier work on a spin-flop transition [15].

In summary, we have studied the magnetic phase dia-
gram of a realistic three-dimensional spin model with
single-ion anisotropy and competing interactions on a
layered triangular lattice, identifying three phases which
are magnetic supersolids in the sense of Liu and Fisher [3].
We find that these supersolids are continuously connected
with parent collinear phases through the Bose-Einstein
condensation of magnons. The model studied was moti-
vated by the metallic triangular lattice antiferromagnet
2H-AgNiO2, and is known to describe its magnetic exci-
tations in zero field [7]. Since the model does not take
itinerant charge carriers into account, it cannot pretend to
be a complete theory of AgNiO2. Nonetheless, it motivates
a reexamination of the low-field transitions seen in
AgNiO2, where a magnetic supersolid may already have
been observed [6].
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