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We demonstrate that in a d-wave superconductor the bulk nonlinear Meissner effect is dominated by a

surface effect due to Andreev bound states at low temperatures. The contribution of this surface effect to

the nonlinear response coefficient follows a 1=T3 law with the opposite sign compared to the bulk 1=T

behavior. The crossover from bulk dominated behavior to surface dominated behavior occurs at a

temperature of T=Tc � 1=
ffiffiffiffi
�

p
. We present an approximate analytical calculation, which supports our

numerical calculations and provides a qualitative understanding of the effect. The effect can be probed by

intermodulation distortion experiments.
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In a superconductor with nodes in the gap function,
quasiparticles near the gap nodes lead to an intrinsic non-
linear electromagnetic response [1]. In a d-wave supercon-
ductor this nonlinear Meissner effect appears as a linear
magnetic field dependence of the magnetic penetration
depth at low temperatures [1,2], but can more sensitively
be probed by temperature dependent intermodulation dis-
tortion or harmonic generation experiments [3]. The non-
linear response coefficient shows an upturn at low
temperatures following a 1=T law in a clean system
down to temperatures of the order of 1=�, where � is the
Ginzburg-Landau parameter of the superconductor. This
behavior has been confirmed by intermodulation distortion
experiments on high-Tc cuprate superconductors [4–6]. At
even lower temperatures nonlocal effects [7], as impurity
effects [8], lead to a saturation of this low temperature
upturn.

At a surface that has a finite angle with the (100)
direction of the crystal, Andreev bound states appear
within a coherence length from the surface [9–12]. These
states split in the presence of a screening current [13–15]
and they carry an anomalous counterflowing paramagnetic
surface current [13,16,17]. In previous work we have
shown that the anomalous surface current leads to a strong
modification of linear response properties [18,19]. Here,
we study its influence on the nonlinear Meissner effect.
Earlier work has found that the magnetic field dependence
of the penetration depth is affected only weakly by surface
Andreev bound states [17]. Here, we will show that the
contribution of the surface Andreev bound states to the
nonlinear response coefficient follows a 1=T3 law, which
will ultimately dominate the bulk 1=T behavior at suffi-
ciently low temperatures. We show that the crossover from
bulk dominated behavior to surface dominated behavior
occurs at a comparatively high temperature of T=Tc �
1=

ffiffiffiffi
�

p
. This means that even for a high �� 100 as is

realized in the cuprates the effect will become dominant
at temperatures below about 0:1Tc.

In order to calculate the nonlinear response coefficient
we solve Eilenberger’s equations [20,21] with full momen-
tum and energy dependence. The gap equation and the
equation for the current density

j ðrÞ ¼ 4�eN0kBT
X!c

"n>0

hvFðk̂Þgðr; k̂; "nÞiFS (1)

are solved self-consistently together with the Maxwell
equation

r�r�AðrÞ ¼ �0jðrÞ: (2)

Here,A is the vector potential, vF is the Fermi velocity, N0

the single spin density of states, and gðr; k̂; "nÞ the
Eilenberger propagator on Matsubara frequencies "n. The
full set of equations and a description of the numerical
solution procedure based on the Riccati technique [22] can
be found in Ref. [19].
We consider a homogeneous superconducting half-

space in the region x � 0 with an external magnetic field
B0 parallel to the z axis, which shall be aligned with the c
axis of the crystal structure. In this geometry the current
flows along the y direction in the superconductor. The gap
function is assumed to have a rotated d-wave form
�ðx; �Þ ¼ �0ðxÞ cos2ð�� �Þ, where � is the angle of ro-
tation with respect to the surface and the angle � denotes
the direction of momentum within the ab plane. As this
problem is translationally invariant in y and z direction, all
quantities only depend on the spatial variable x. The self-
consistent solution of Eilenberger’s equations on real fre-
quencies allows us to calculate the local, angular resolved
normalized density of states

NðE; x; �Þ ¼ �Imgðx; �; i�n ! Eþ i0þÞ: (3)

The equation for the y component of the current density (1)
can be transformed by contour integration and analytic
continuation to the real axis [2,8]:
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jðxÞ ¼ 2

�
eN0vF

Z 1

�1
dE

Z �

0
d� sin�

� fðEÞ½NþðE; x; �Þ � N�ðE; x; �Þ�; (4)

where fðEÞ ¼ 1
1þeE=T

is the Fermi function and N� denotes

the normalized density of states for comoving and counter-
moving quasiparticles relative to the condensate flow, i.e.,
NþðE; x; �Þ ¼ N�ðE; x; �� �Þ. Once the current density
distribution jðxÞ is obtained, the magnetic field distribution
BðxÞ and the vector potential AðxÞ are found from integra-
tion of Eq. (2).

For a high-� superconductor the length scale of variation
of the vector potential, the magnetic penetration length �,
is a factor of � larger than the variation of the Eilenberger
propagator g on the length scale of the coherence length
�0 ¼ @vF=��0. Thus, for temperatures T=Tc * 1=� it is a
very good approximation to evaluate the angular resolved
local density of states by a local Doppler shift of the fully
nonlocal Eilenberger propagator in the absence of a vector
potential, i.e.,

N�ðE; x; �Þ ¼ NðE� evF �AðxÞ; x; �Þ; (5)

where NðE; x; �Þ on the right-hand side is calculated with
AðxÞ ¼ 0 but fully includes the surface Andreev bound
states. Here, we have chosen the real gauge in which the
vector potential is directly proportional to the superfluid
velocity vsðxÞ ¼ � e

mAðxÞ.
In order to determine the lowest order nonlinear re-

sponse, Eq. (5) is substituted into Eq. (4) and we make a
Taylor series expansion of j in the vector potential AðxÞ:

jðxÞ ¼ �2e2v2
FN0	1ðxÞAðxÞ þ 2e4v4

FN0

�2
0

	3ðxÞA3ðxÞ

þOðA5Þ: (6)

Here, the even terms in A cancel out due to symmetry.
After a partial integration the dimensionless expansion
coefficients are given by the expressions

	1 ¼ 1þ 2

�

Z �

0
d�sin2�

Z 1

�1
dE

@f

@E
NðE; x; �Þ; (7)

	3 ¼ ��2
0

2

�

Z �

0
d�sin4�

Z 1

�1
dE

@3f

@E3
NðE; x; �Þ; (8)

where �0 is the zero temperature gap value in the bulk.
Note that in contrast to the bulk calculation [3,8] the
expansion coefficients now depend on the distance from
the surface. Within a distance of the order of the coherence
length they contain contributions from the Andreev bound
states. The coefficient	1 describes the linear response, and
the coefficient 	3 the lowest order nonlinear response. The
spatial dependence of 	3 is shown in Fig. 1 for a (110)
surface (� ¼ �=4) at a temperature of T ¼ 0:1Tc. Deep in
the bulk, 	3 is positive and reaches the low temperature

value �0=2T known from previous work [3]. However,
when the surface is approached within a few coherence
lengths, 	3 changes sign and reaches extremely large
negative values at the surface.

FIG. 1. Spatial dependence of the nonlinear coefficient 	3 at
T ¼ 0:1Tc and � ¼ �=4 as a function of the distance x from the
surface in units of the coherence length �0. Inset: larger scale for
x > 4�0, highlighting the sign change of 	3.

FIG. 2 (color online). Double logarithmic plot of j	3j as a
function of temperature T=Tc for three selected positions:
(a) x ¼ 0, (b) x ¼ 8�0, and (c) x ¼ 45�0. The red dashed lines
show a 1=T3 dependence, and the blue dotted lines a 1=T
dependence.
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The temperature dependence of the modulus j	3j is
shown in Fig. 2 on a double logarithmic scale for three
selected spacial positions. Figure 2(c) shows the tempera-
ture dependence at x ¼ 45�0 in the bulk. As is well known
from previous work, j	3j follows a 1=T law at low tem-
peratures (blue dotted line). Right at the surface (x ¼ 0),
however, Fig. 2(a) demonstrates that j	3j is following a
1=T3 behavior (red dashed line). In Fig. 2(b) an intermedi-
ate position at x ¼ 8�0 is shown. In this case, at higher
temperatures a 1=T law is followed. At a certain tempera-
ture, 	3 changes sign and starts to follow a 1=T3 behavior
below that temperature. These results clearly show that the
nonlinear response coming from the surface area, where
the Andreev bound states are present, is much stronger and
of opposite sign than the nonlinear response in the bulk.

In a typical intermodulation experiment only the total
response of the system is probed. The quantity that is
observed is the nonlinear change of the total inductance
of the system [3]. The total inductance L can be calculated
from the total kinetic and magnetic field energy in the
system via the equation

1

2
LI2 ¼ 1

2�0

Z 1

0
dxðB2ðxÞ ��0jðxÞAðxÞÞ; (9)

where I ¼ R1
0 dxjðxÞ is the total current per unit length [3].

Using Eq. (2), B ¼ dA=dx, and the fact that the magnetic
field vanishes in the bulk, Eq. (9) can be brought by partial
integration into the more convenient form

L ¼ �A0

I
(10)

with A0 ¼ Aðx ¼ 0Þ. To lowest order in A0 the total current
I generally will be of the form

I ¼ a1A0 þ a3A
3
0: (11)

The intermodulation response is proportional to the non-

linear coefficient @
2L
@I2

jI¼0 [3]. A straightforward calculation

shows that this quantity can be related to the expansion
coefficients a1 and a3 using Eq. (10):

@2L

@I2

��������I¼0
¼ 2a3

a41
: (12)

We have determined a1 and a3 from our numerical
solution of Eilenberger’s equations. The resulting values

for j @2L
@I2

jI¼0 are shown in Fig. 3 as a function of reduced

temperature for � ¼ 63 (solid black circles) and � ¼ 1000
(solid red squares) on a double logarithmic scale.
Decreasing the temperature from Tc, for � ¼ �=4 the
nonlinear coefficient initially decreases and changes sign
at a temperature near T=Tc � 2:4=

ffiffiffiffi
�

p
. Below that tem-

perature the nonlinear coefficient increases following a
1=T3 law and finally diverges at a temperature near
T=Tc � 1=�. For comparison the behavior for � ¼ 63
and� ¼ 0 is also shown, when the surface states are absent
(open circles). In this case there is no sign change and the

nonlinear coefficient follows a 1=T behavior at low tem-
peratures, as known from the bulk.
In order to check the validity of the numerical calcula-

tions and obtain a physical understanding of the results, we
made an approximate analytical solution of the problem,
which we present now. For a piecewise constant gap func-
tion, Eilenberger’s equations can be solved analytically
[22]. As an approximation we assume that the d-wave
gap is constant in space. Then the analytical solution of
Eilenberger’s equations allows us to determine the residue
of the zero energy pole of the Eilenberger propagator
analytically, which contains the contributions from the
zero energy bound states at the surface. As a result, we
find the following expression for the bound state contribu-
tion to the local, angular resolved density of states for � ¼
�=4 in the absence of an external field:

NbsðE; x; �Þ ¼ ��0j sin2�je�ð4=�Þj sin�jðx=�0Þ
ðEÞ: (13)

The 
 function shows that the bound states are only present
at zero energy. The exponential factor drops off on a length
scale of the coherence length, showing that these states are
localized at the surface. Introducing this expression into
Eq. (8) the energy integration immediately shows that the
bound states lead to a 1=T3 scaling, which is of opposite

sign than the bulk behavior, because @3f
@E3 is positive at zero

energy, but negative at higher energies.
In order to determine the coefficients a1 and a3 in

Eq. (11), we integrate Eq. (6) using the following approx-
imations. For � ¼ �=�0 	 1 we can assume that the vec-
tor potential varies exponentially on the length scale of the
penetration length �, and make the ansatz

AðxÞ ¼ ðA0 � �Þe�x=� þ �e�3x=�: (14)

FIG. 3 (color online). Double logarithmic plot of j @2L
@I2

jI¼0 as a
function of temperature T=Tc for � ¼ 63 and � ¼ �=4 (solid
black circles), for � ¼ 1000 and � ¼ �=4 (solid red squares),
and for � ¼ 63 and � ¼ 0 (open blue circles). The dashed lines
show a 1=T3 behavior, and the dotted line a 1=T behavior. The
solid lines show the approximation Eq. (16) for � ¼ 63 (black)
and � ¼ 1000 (red), respectively.
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The functions 	1 and 	3 both vary on the length scale of
the coherence length, which is much smaller than �.
Therefore, we can approximate them as

	1ðxÞ ¼ c1
ðxÞ þ 	1b; 	3ðxÞ ¼ c3
ðxÞ þ 	3b:

Here, 	1b and 	3b are the bulk values of 	1 and 	3,
respectively. The coefficients c1 and c3 describe the con-
tributions of the surface bound states. They are obtained by
substituting Eq. (13) into Eqs. (7) and (8) and integrating

over x from 0 to 1. This yields c1 ¼ � ��0

6T �0 and c3 ¼
�ð��3

0=20T
3Þ�0. The parameter � in Eq. (14) is deter-

mined from the differential equation Eq. (2) together with
Eq. (6) and up to order A3

0 found to be

� ¼ 1

8

e2v2
F	3b

�2
0	1b

A3
0: (15)

With these approximations after integrating Eq. (6) we find

a1 ¼ �2e2v2
FN0ðc1 þ �	1bÞ;

a3 ¼ 2e4v4
FN0

�2
0

�
c3 þ �

4
	3b

�
:

Using the low temperature limiting expressions 	1b � 1
and 	3b � �0=2T finally leads to

@2L

@I2

��������I¼0
¼ 1

16e4v4
FN

3
0�

2
0�

3

1
2
�0

T � �
5

1
�

�3
0

T3

ð1� �
6

1
�

�0

T Þ4
: (16)

This expression shows that upon lowering the temperature
from Tc the total nonlinear response of the system initially
follows the 1=T increase caused by the bulk nonlinearities
(first term in the numerator). At a temperature of the order
of T=Tc � 1=

ffiffiffiffi
�

p
the nonlinearities of the surface states

become comparable with the bulk contributions and cancel
them (second term in the numerator). Below that tempera-
ture the 1=T3 increase with the opposite sign dominates
due to the surface states. Finally, at a temperature of the
order of T=Tc � 1=� the nonlinear response diverges (de-
nominator). This divergence signals breakdown of the
local, large � approximation we have used here [17]. The
approximate expression Eq. (16) is shown in Fig. 3 to-
gether with the numerical results. The agreement is quite
good at low temperatures despite the approximations
made.

To conclude, we have shown that in a d-wave supercon-
ductor surface Andreev bound states lead to a strong con-
tribution to the nonlinear Meissner effect, which follows a
1=T3 behavior at low temperatures and is of the opposite
sign compared to the bulk nonlinear response. At tempera-
tures below T=Tc � 1=

ffiffiffiffi
�

p
these contributions dominate

the total nonlinear response. Such temperatures are readily
available in intermodulation experiments and make them a
tool to study surface Andreev bound states. The fingerprint
of the Andreev bound states should be a 1=T3 temperature
dependence and a sign change (180
 relative phase
change) in the nonlinear part of the inductance. So far,
intermodulation experiments have been mostly done on
systems with (100) surfaces, where Andreev bound states
are absent. In systems with (110) surfaces the effect studied
here should become most prominent.
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