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We derive from the classic Maxwell-Bloch equations a set of difference-differential equations valid, in

general, when the length of the nonlinear medium in the optical cavity is much smaller than a wavelength.

Such equations provide an elegant and simple framework in which the case of Fabry-Perot and ring cavity

can be discussed in a unified way. We outline a complete scenario for the multimode laser instability in the

Fabry-Perot case, illustrating the results for parameter values appropriate to quantum cascade lasers. Our

approach can have a relevant impact also on the study of dynamical instabilities in external cavity

semiconductor lasers, including multiple quantum well or quantum-dot structures.
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The last 30 years witnessed a flourishing development of
theoretical and experimental activities in the area of tem-
poral and spatial instabilities in general and in nonlinear
optical systems in particular (see, e.g., [1–3]). Complete
models which include timeþ 3D in space are extremely
difficult to handle numerically even when the nonlinear
medium is enclosed in an optical cavity. A tractable con-
figuration, which has been extensively studied, is that of
ring cavity models in the single-longitudinal mode ap-
proximation, because one can neglect the longitudinal
variable z and therefore reduce to timeþ 2D.

The case of Fabry-Perot (FP) cavity is, however, sub-
stantially more complex than that of ring cavity, because
one must take into account the left- and the right-
propagating fields and the standing wave effects which
arise from their superposition. Literature on FP instabilities
is substantially less extended (see, e.g., [4,5]).

Here we show that a dramatic simplification can be
introduced when the medium has a longitudinal extension
wmuch smaller than the carrier wavelength �, which is the
situation in engineered devices such as quantum well
devices. Starting from the classic context of the
Maxwell-Bloch Equations (MBEs), we show that since
the propagation in the empty part of the cavity is trivial,
the MBEs can be lumped in general into an elegant set of
difference-differential equations (DDEs) in which the lon-
gitudinal variable z does not appear any more.

The DDEs introduced for the ring cavity in the pioneer-
ing works of Ikeda [6(a),6(b)] played a crucial role in the
prediction and in the analysis of optical chaos. Much more
recently, a model similar to Ikeda’s was derived and ap-
plied to the study of passive mode locking in semiconduc-
tor lasers [7]. Yet, those models are valid only in the rate
equation approximation [6(a),7] or in the dispersive Kerr
limit [6(b)]. A generalization of the latter case to the FP
configuration was provided in [6(c)].

By contrast, in the derivation of our DDEs for the case
w � � we do not make any assumption on the relaxation
rates of the variables. Yet, our equations are much simpler
than those of [6] for the MBEs. This feature of elegance

and simplicity brings also another important bonus: the
equations for the FP case are only slightly more complex
than for the ring cavity, because the forward and backward
fields can be lumped into a single field and standing wave
effects do not enter into play.
By using this set of DDEs, the computer time is drasti-

cally reduced. Even in the context of the plane wave
approximation, i.e., neglecting the transverse variables x
and y, the reduction is on the order of a factor 100.
We derive the DDEs for both the FP and the ring cavity,

but we devote more attention to the FP case which in this
case can be treated in a simple way for the first time. For
the sake of brevity, we limit ourselves to the case that the
medium is in resonance with the cavity and, when there is
an input field injected into the cavity, it is also resonant.
The generalization to the nonresonant case does not
present difficulties.
We consider a FP cavity of length L � � containing a

nonlinear medium of thickness w � � centered at z ¼ �z.
The system is described by a set of MBEs that follow from
those of [4,8] assuming (as implied by the condition w �
�) that the atomic variables P (polarization) and D (popu-
lation difference) depend only on the value of the forward
and backward fields EF;B at z ¼ �z and that the source term
in the Maxwell equation is � like in z
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with

FðtÞ ¼ ei�EFð�z; tÞ þ e�i�EBð�z; tÞ; (4)

and � ¼ k0 �z (mod �). In the above equations � is the
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unsaturated gain/absorption coefficient per unit length,
� ¼ 1 for an amplifier medium and � ¼ �1 for an ab-
sorber, and k0 ¼ 2�=�. Time is scaled to the inverse offfiffiffiffiffiffiffiffiffiffiffiffi
�k�?

p
where �? and �k are the decay rates of P and D,

respectively. Hence, v ¼ c=
ffiffiffiffiffiffiffiffiffiffiffiffi
�k�?

p
and � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k=�?

q
.

Perfect resonance between the carrier frequency and the
atoms has been assumed and all the quantities EF, EB, P D
have been properly normalized.

If we introduce the variables t0 ¼ t� z=v and z0 ¼ z,
and write EFðz; tÞ ¼ ~EFðz0; t0Þ ¼ EFðz0; t0 þ z0=vÞ,
EBðz; tÞ ¼ ~EBðz0; t0Þ ¼ EBðz0; t0 þ z0=vÞ, Eq. (1) becomes
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Pðt0 þ z0=vÞ�ðz0 � �zÞ: (5)

Now we integrate this equation in z0 first from z0 ¼ 0 to
z0 ¼ �z and then from z0 ¼ �z to z0 ¼ L. In both cases the
contribution of the terms with ~EB vanishes, provided �z,
L� �z � �, because the variation of those terms is much

slower than the variation of the exponential term e�2ik0z
0
. In

terms of the field EF we have

EFðL; t0 þ L=vÞ � EFð�z; t0 þ �z=vÞ
¼ EFð�z; t0 þ �z=vÞ � EFð0; t0Þ ¼ �Pðt0 þ �z=vÞ; (6)

with � ¼ ð��w=2Þe�i�. By proceeding in a similar way
with the variables t00 ¼ tþ z=v and z00 ¼ z, we have

EBð�z; t00 � �z=vÞ � EBðL; t00 � L=vÞ
¼ EBð0; t00Þ � EBð�z; t00 � �z=vÞ ¼ ��Pðt00 � �z=vÞ: (7)

The boundary conditions of the FP resonator with two
plane mirrors of reflectivity R ¼ 1� T are [9]

EFð0; tÞ ¼
ffiffiffiffi
R

p
EBð0; tÞ þ Ty; EBðL; tÞ ¼

ffiffiffiffi
R

p
EFðL; tÞ;

(8)

where y is the normalized amplitude of a perfectly resonant
external field which possibly enters the cavity through the
mirror at z ¼ 0. By setting t0 þ �z=v ! t in Eq. (6) and
t00 � �z=v ! t in Eq. (7) and expressing EF and EB at z ¼ 0
and z ¼ L in terms of EF and EB at z ¼ �z, we can trans-
form the boundary conditions (8) in two coupled maps for
EFð�z; tÞ and EBð�z; tÞ. Once inserted one into the other, they
yield two separate maps for EF and EB, from which we can
obtain a single map for the field F defined by Eq. (4). In the
limit T � 1, �w ¼ OðTÞ and keeping only terms up to
first order in T, it reads

FðtÞ ¼ RFðt� �Þ þ Tf	yþ C�½PðtÞ þ Pðt� �Þ�
þ 
C�½e2i�Pðt� ��Þ þ e�2i�Pðt� �þ ��Þ�g; (9)

where C ¼ �w=T, 	 ¼ 2 cos�, 
 ¼ 1, and � ¼ 2L=v is
the cavity round-trip time, while �� ¼ 2�z=v is the time
taken by light to travel from the nonlinear medium to the
mirror in z ¼ 0 and back.

A similar map can be obtained considering a ring cavity
of length L with two partially reflecting mirrors. In that
case obviously the parameters � and �� disappear because,
if the electric field is a traveling wave, the position �z of the
nonlinear medium is irrelevant. By starting from Eqs. (1)–
(4) with EF only and 2� instead of �, one arrives at Eq. (9)
with	 ¼ 1, 
 ¼ 0, and � ¼ L=v. A similar equation for a
ring cavity was derived in [10] under the assumption of
nonlinear medium much shorter than the cavity length.
Indeed in a ring cavity it is not necessary to assume that
the medium is much shorter than the wavelength because
of the traveling wave nature of the electric field.
With the appropriate choice of the parameters 	 and 
,

the set of DDEs (2), (3), and (9) describes both a FP
resonator and a ring cavity in the limit of thin nonlinear
medium. In the following we will focus on the case of a
laser (� ¼ 1) without an injected field (y ¼ 0). A quantum
cascade laser (QCL) with coated surfaces would be par-
ticularly suited to be modeled with our equations, because
the high reflectivity would allow one to build an active
region with few gain periods. Since the thickness of a
single period is about 50 nm and the emission wavelength
is about 10 	m, our assumption of active region thin with
respect to the period of the standing wave would be well
satisfied by such a laser. For this reason in this Letter we
assume high mirror reflectivity (T ¼ 0:01) and � ¼ 0:365,
a value suitable for a quantum cascade laser [11].
In the stationary solution of the DDEs only the resonant

mode is active and one has

jxj2 ¼ 2Cð1þ 
 cos2�Þ � 1; (10)

where x is the stationary value of F. The laser threshold is
2Cth;0 ¼ 1 for a ring cavity and 4Cth;0 ¼ 1=cos2� for a FP

resonator, i.e., in that case it depends on the position of the
active region. The threshold is minimum when the active
region is positioned at an antinode of the standing wave
profile (cos2� ¼ 1). This is in contrast with the case of a
medium of length w � �, in which the steady-state solu-
tion does not depend on the position of the sample in the
cavity [8].
We perform a standard linear stability analysis of the

stationary solution by introducing the fluctuations �XðtÞ ¼
�X0e

�t with X ¼ F, F�, P, P�, D. In the limit T � 1 we

can solve the problem perturbatively by setting � ¼ �n ¼
�ð0Þ
n þ T�ð1Þ

n þOðT2Þ, where �ð0Þ
n ¼ �i!n and !n ¼

2�n=�, (n ¼ 0;�1; . . . ) is the angular frequency of the
empty cavity longitudinal mode of index n (the resonant

mode corresponds to n ¼ 0). Since �ð0Þ
n is purely imagi-

nary, the stability of the stationary solution is determined

by the sign of the real part of the first order corrections �ð1Þ
n ,

which can be obtained from the linearized equations at first
order in T

½A�þ
n � Cð1þ �ð1Þ

n �Þ��F0 þB�þ
n x

2�F�
0 ¼ 0; (11)
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B��
n x

�2�F0 þ ½A��
n � Cð1þ �ð1Þ

n �Þ��F�
0 ¼ 0; (12)

with A ¼ 2ð1� i�!nÞð�� i!nÞ þ i�2jxj2!n, B ¼
�ði�!n � 2Þ, and C ¼ 2ð1� i�!nÞ½ð1� i�!nÞ�
ð�� i!nÞ þ �jxj2�. The coefficients ��

n represent the ra-
tio of the intensities of the modes�n to that of the resonant
mode at z ¼ �z.

In a ring cavity ��
n ¼ 1 because the modes are traveling

waves. This implies that we can write two independent
equations for the real and imaginary parts of �F0 and
distinguish [2] between a phase eigenvalue, which does
not give rise to any instability, and an amplitude eigen-
value, which coincides with that of the classic Risken-
Nummedal-Graham-Haken (RNGH) instability [12]. An
example of instability domain is shown in Fig. 1.

In a FP cavity the coefficients ��
n are given by

��
n ¼ cos2ð�� �nrÞ=cos2�; (13)

where the parameter r ¼ ��=� ¼ �z=L is the relative posi-
tion of the nonlinear medium inside the cavity. If the non-
linear medium is positioned exactly at one antinode of the
standing wave (� ¼ 0), we have ��

n ¼ cos2ð�nrÞ � �n.
Amplitude and phase instabilities are still decoupled be-
cause �þ

n ¼ ��
n but, unlike in the ring cavity, the shape of

the instability domains depends on the modal index n
through the coefficients �n, which range from 0 to 1. For
�n ¼ 1 the instability domain coincides with that of the
ring cavity, for smaller �n it moves to the right and the
instability threshold rapidly increases. This means that a
variety of new RNGH-like instability scenarios are pos-
sible in the FP cavity, depending on r. Here we focus on the
simplest case r ¼ 1=2, i.e., active medium placed exactly
at the center of the cavity. In that case �n can take only two
values: 1 for even n, and 0 for odd n. For�n ¼ 0 there is no
instability. Thus, the RNGH instability domain of Fig. 1 is
valid for both types of cavity, but in the FP cavity the
solution can be destabilized only by even modes. The
RNGH instability has been recently observed in a QCL
laser in a FP configuration [11].

We have integrated the DDEs with C=Cth;0 ¼ 12 and

� ¼ 3 (!2 ’ 4:19) for both types of cavity and� ¼ 0, r ¼
1=2 for the FP cavity. With that choice the stationary
solution is unstable with respect to modes n ¼ �2. The
pulses obtained with the two types of cavity are almost
perfectly identical, and they also coincide with those ob-
tained integrating the standard MBEs, where it is assumed
that the nonlinear medium fills the cavity. This result stems
from the choice of r and �. For other values of those
parameters the two types of cavity will differ both for the
instability threshold and for the order of the modes in-
volved in the dynamics.

For a generic FP resonator with � � 0 the amplitude
and phase instabilities are no longer decoupled, and new
instabilities may arise due to the fact that mode n ¼ 0,
which is resonant with the atoms, is not necessarily the
mode with maximum gain. This occurs because, although

the resonant mode n ¼ 0 has the maximum ‘‘spectral’’
gain, a mode with a different index could experience more
‘‘spatial’’ gain, because its standing wave pattern matches
better the position of the active region. Therefore, in addi-
tion to the stationary solution (10), Eqs. (2), (3), and (9)
admit also other stable single-mode solutions with station-
ary intensity, where only one nonresonant mode n � 0 is
active. The threshold for such solutions is 4Cth;n ¼ ð1þ
!2

n�
2Þ=cos2ð�þ �nrÞ, where the numerator displays the

parabolic increase of the threshold with the frequency
typical of two-level atoms, but the denominator, if � �
0, can compensate for it and make the threshold for a mode
of index n � 0 smaller than that for n ¼ 0.
Let us consider for instance a FP cavity with� ¼ ��=5

and r ¼ 0:1125. The instability domain of the stationary
solution n ¼ 0 with respect to mode n ¼ 1 is shown in
Fig. 2(a). A new instability domain besides the RNGH-like
one appears for smaller values of pump and frequency. The
stationary solution n ¼ 0 is unstable with respect to mode
n ¼ 1 already at threshold when the frequency !1 is not
too much detuned from resonance.
Depending on the cavity length, we have two different

scenarios: for shorter cavities (!1 > 3:873) the RNGH
instability, for longer cavities (1:765<!1 < 2:2) a novel
instability, which occurs much closer to threshold, and
causes a switch from mode n ¼ 0 to mode n ¼ 1 as C
increases, as shown in Fig. 2(b).
The relevant point is that the switch is not abrupt be-

cause there is a range of values of C for which none of the
modes is stable and the output is oscillatory. In that case the
squares represent the minima and maxima of the oscilla-
tions. After the laser has switched to mode n ¼ 1, the
opposite switch is observed if C is decreased. The dashed
lines represent the stationary intensities of the two single-
mode solutions n ¼ 0 and n ¼ 1. Over a large range of

 2
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FIG. 1. Instability domain of the stationary solution of
Eqs. (2), (3), and (9) for a ring cavity and a FP cavity with � ¼
0, r ¼ 1=2. For a given C the solution is unstable against mode n
if!n lies between the two curves. For the FP cavity nmust be an
even number. The dashed lines show the values of !1 and !2 for
� ¼ 3.
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values of C the laser emits mode n ¼ 0 although the
intensity of mode n ¼ 1 would be larger.

In conclusion, for a nonlinear medium of length wmuch
smaller than the wavelength � we have cast the classic
MBEs into a very advantageous difference-differential
equations configuration, which allows us to treat the FP
case in parallel to that of a ring cavity. This has allowed us
to obtain in a straightforward way a complete picture of the
instability scenario for a FP laser, including the case of the
classic RNGHmultimode instability (which is much richer
in the FP case) and a novel low threshold self-pulsing
instability which is exclusive for the FP configuration.

Our approach can have the most relevant impact in the
case of three spatial dimensions, in the study of phenomena
of outstanding interest for applications, e.g., the generation
of pulses localized in 3D and time (light bullets). The
substantial reduction in computer time represents in this
case the crucial step which enables one to engineer the
parameters (such as �z, �, ��) to obtain the desired spatio-
temporal behavior. 3D models include the transverse var-
iables x and y via the transverse Laplacian which describes
diffraction in the paraxial approximation. The most natural

configuration is that of external cavity semiconductor la-
sers such as the VECSELs [13], which contain multiple
quantum well or quantum-dot regions. For example, it can
advantageously be applied to the VECSEL with saturable
absorber [14]. The procedure to derive the DDEs, that we
described for the MBEs, can be straightforwardly general-
ized to semiconductor models, both in the rate equation
approximation and including the material polarization, as it
will be explicitly shown elsewhere.
We thank one of the referees for informing us of

Ref. [10].

[1] N. B. Abraham, P. Mandel, and L.M. Narducci, in
Progress in Optics (North-Holland, Amsterdam, 1988),
Vol. 25, p. 3ff; C. O. Weiss and R. Vilaseca, Dynamics
of Lasers (VCH, Weinheim, 1991); Ya. I. Khanin,
Principles of Laser Dynamics (Elsevier, New York,
1995); W. J. Firth, in Self-organization in Optical
Systems with Applications to Information Technology
(Springer-Verlag, Berlin, 1995), p. 69ff; P. Mandel,
Theoretical Problems in Cavity Nonlinear Optics
(Cambridge University Press, Cambridge, UK, 1997);
F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, Phys.
Rep. 318, 1 (1999).

[2] L. A. Lugiato and L.M. Narducci, in Fundamental
Systems in Quantum Optics (Elsevier, New York, 1992)
p. 941ff.

[3] L. A. Lugiato, M. Brambilla, and A. Gatti, in Advances in
Atomic, Molecular, and Optical Physics (Academic Press,
San Diego, 1999), Vol. 40, p. 229ff.

[4] H.M. Gibbs, Optical Bistability: Controlling Light with
Light (Academic Press, Orlando, 1985), p. 47.

[5] H. J. Carmichael, Opt. Acta 27, 147 (1980); L.W.
Casperson, Phys. Rev. A 21, 911 (1980).

[6] (a) K. Ikeda, Opt. Commun. 30, 257 (1979); (b) K. Ikeda,
H. Daido, and O. Akimoto, Phys. Rev. Lett. 45, 709
(1980); (c) K. Ikeda and M. Mizuno, IEEE J. Quantum
Electron. 21, 1429 (1985).

[7] A. G. Vladimirov and D. Turaev, Phys. Rev. A 72, 033808
(2005).

[8] L. A. Lugiato and L.M. Narducci, Z. Phys. B 71, 129
(1988).

[9] S. L. Mc Call, Phys. Rev. A 9, 1515 (1974).
[10] P.W. Milonni, M. L. Shih, and J. R. Ackerhalt, Chaos in

Laser–Matter Interactions (World Scientific Publishing
Company, Singapore, 1987), pp. 162–167.

[11] A. Gordon et al., Phys. Rev. A 77, 053804 (2008). Here
the observed instability threshold was much lower than
predicted by the RNGH theory, and that behavior was
attributed to the presence of saturable absorption.

[12] H. Risken and K. Nummedal, J. Appl. Phys. 39, 4662
(1968); R. Graham and H. Haken, Z. Phys. 213, 420
(1968); E.M. Pessina, G. Bonfrate, F. Fontana, and L.A.
Lugiato, Phys. Rev. A 56, 4086 (1997); T. Voigt, M. Lenz,
F. Mitschke, E. Roldán, and G. J. de Valcárcel, Appl. Phys.
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FIG. 2. (a) Instability domains of the stationary solution of
Eqs. (2), (3), and (9) with respect to mode n ¼ 1 in a FP cavity
with � ¼ ��=5 and r ¼ 0:1125. (b) Output intensity for differ-
ent C and � ¼ 3, which corresponds to the dashed line of (a).
The inset shows the pulsations for C ¼ 2:64Cth;0.

PRL 104, 233902 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
11 JUNE 2010

233902-4

http://dx.doi.org/10.1016/S0370-1573(99)00007-1
http://dx.doi.org/10.1016/S0370-1573(99)00007-1
http://dx.doi.org/10.1103/PhysRevA.21.911
http://dx.doi.org/10.1016/0030-4018(79)90090-7
http://dx.doi.org/10.1103/PhysRevLett.45.709
http://dx.doi.org/10.1103/PhysRevLett.45.709
http://dx.doi.org/10.1109/JQE.1985.1072824
http://dx.doi.org/10.1109/JQE.1985.1072824
http://dx.doi.org/10.1103/PhysRevA.72.033808
http://dx.doi.org/10.1103/PhysRevA.72.033808
http://dx.doi.org/10.1007/BF01310852
http://dx.doi.org/10.1007/BF01310852
http://dx.doi.org/10.1103/PhysRevA.9.1515
http://dx.doi.org/10.1103/PhysRevA.77.053804
http://dx.doi.org/10.1063/1.1655817
http://dx.doi.org/10.1063/1.1655817
http://dx.doi.org/10.1007/BF01405384
http://dx.doi.org/10.1007/BF01405384
http://dx.doi.org/10.1103/PhysRevA.56.4086
http://dx.doi.org/10.1007/s00340-004-1531-5
http://dx.doi.org/10.1007/s00340-004-1531-5
http://dx.doi.org/10.1364/OE.16.009519
http://dx.doi.org/10.1016/j.physrep.2006.03.004

