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We argue that the presence of a very strong magnetic field in the chirally broken phase induces

inhomogeneous expectation values, of a spiral nature along the magnetic field axis, for the currents of

charge and chirality, when there is finite baryon density or an imbalance between left and right chiralities.

This ‘‘chiral magnetic spiral’’ is a gapless excitation transporting the currents of (i) charge (at finite

chirality), and (ii) chirality (at finite baryon density) along the direction of the magnetic field. In both cases

it also induces in the transverse directions oscillating currents of charge and chirality. In heavy ion

collisions, the chiral magnetic spiral possibly provides contributions both to the out-of-plane and the in-

plane dynamical charge fluctuations recently observed at BNL RHIC.
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Recently, the STAR Collaboration at the Relativistic
Heavy Ion Collider reported [1,2] observation of charge-
dependent azimuthal correlations, representing evidence
for the chiral magnetic effect (CME) [3–7] in QCD
coupled to electromagnetism. The essence of the effect is
the generation of electric current along the direction of an
external magnetic field in the presence of topologically
nontrivial gauge field configurations creating a local im-
balance between left and right chiralities. The colliding
positively charged ions generate, at early times, a very
strong magnetic field, eB�m2

� [5,8], that inside the pro-
duced quark-gluon matter is directed perpendicular to the
reaction plane of the collision. Topological fluctuations in
the produced matter (for recent specific realizations, see
[9,10]) then induce the experimentally measured charge
asymmetry with respect to the reaction plane that fluctuates
on an event-by-event basis. The basic physics of the CME
can be understood in terms of a dimensionally reduced
effective 1þ 1 dimensional theory [3–7], and in this Letter
we identify a new feature of this dimensional reduction that
implies spiral modulations of the transverse components of
the 3þ 1 dimensional currents. We do not explicitly take
into account finite temperature effects, but expect our
treatment to be quantitatively accurate when eB > T2.

The CME has been studied also in lattice gauge theory,
and evidence for charge separation in a magnetic field has
been found both in the quenched calculation [11] and in the
calculation with dynamical light quarks [12]. At finite
baryon density, there is a closely related phenomenon of
chiral separation (flow of axial current) along the direction
of the magnetic field [13–15]. Very recently, it has been
found [16] that the vacuum of the theory in the confined,
chirally broken phase develops a finite electric conductiv-
ity along the direction of a sufficiently strong external
magnetic field. A natural question arises about the nature
of the low frequency mode capable of transporting the
charge current in the vacuum. In this Letter we examine
the mechanism of the CME in the chirally broken phase

using the method of dimensional reduction appropriate in
the presence of a strong magnetic field.
The two important physical effects are the lowest

Landau level (LLL) projection induced by the strong mag-
netic field, which leads to an effective reduction of the
system to 1þ 1 dimensions, as in the physics of magnetic
catalysis of symmetry breaking [17,18], and the topologi-
cal charge fluctuations of the QCD vacuum, which induce
local regions of chirality of zero modes. The chiral mag-
netic effect can be understood as a dimensional reduction
of the chiral anomaly [19] to the 1þ 1 dimensional chiral
anomaly, expressed in terms of the 1þ 1 dimensional
density and current, �y� and ���z�. Here it is crucial
that the spin degeneracy of the relativistic Landau levels
is absent in the LLL. Our new observation here is moti-
vated by recent studies of chiral symmetry breaking in 1þ
1 dimensional interacting fermion systems, which have
highlighted the importance of a ‘‘chiral spiral’’ phase, in
which the other bilinears, the scalar and pseudoscalar
condensates ( ���) and ( ��i�5�), become spatially inhomo-
geneous, forming the chiral spiral with � � ð ���Þ �
ið ��i�5�Þ ¼ Ae2i�z. This chiral spiral phase is the broken
phase of the large Nf chiral Gross-Neveu model [20,21],

has been identified in the ’t Hooft model [22], and has
recently been found as a 2D pion condensate in quarkyonic
matter [23]. In this Letter we show that the chiral spiral is
another facet of the chiral anomaly, and in the presence of
magnetic field it induces a chiral magnetic spiral in the
longitudinal and transverse components of the axial and
charge currents.
There are three important spinor bases relevant to our

discussion: a chirality basis, a spin basis and a momentum
direction basis, because of the roles played by topological
charge fluctuations, Zeeman splitting, and the dimensional
reduction due to lowest Landau level projection. We con-
sider a strong (and approximately uniform) magnetic field
B along the x3 direction, sufficiently strong to induce
dimensional reduction as in [3–7,17,18]. We use Dirac
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matrices (j ¼ 1, 2, 3)

�0 ¼ 0 1

1 0

 !
�j ¼ 0 ��j

�j 0

 !
�5 ¼ 1 0

0 �1

 !
:

We decompose the 4-component spinor in terms of eigen-
states of the chiral projectors, PR;L ¼ 1

2 ð1� �5Þ, the spin

projectors P";# ¼ 1
2 ð1� �3Þ, and the momentum direction

projectors Pþ;� ¼ 1
2 ð1� �0�3Þ. The longitudinal spin op-

erator is �3 ¼ �0�3�5 ¼ diagð�3; �3Þ, and the helicity
operator is �0�3 ¼ diagð�3;��3Þ. We can write the 4-
component spinor field as� ¼ ðRþ; R�; L�; LþÞT . Define
the following 2 component spinors, eigenspinors of chi-
rality, spin and momentum direction, respectively:

R ¼ Rþ; R�
� �

T L ¼ Lþ; L�
� �

T

�" ¼ Rþ; L�
� �

T �# ¼ Lþ; R�
� �

T

�þ ¼ Rþ; Lþ
� �

T �� ¼ L�; R�
� �

T:

(1)

Then the axial current, J�5 ¼ �����5�, can be decom-

posed in terms of 2-component spinors as follows:

J05 ¼ RyR�LyL ¼ �i ��"�z�" þ i ��#�z�#
J15 ¼ �RRþ �LL ¼ ��"�# þ ��#�"
J25 ¼ i �R�5R� i �L�5L ¼ �i ��"�# þ i ��#�"

J35 ¼ �R�zR� �L�zL ¼ �y
" �" ��y

# �#

(2)

and the charge current, J� ¼ �����, is decomposed:

J0 ¼ RyRþLyL ¼ �y
" �" þ�y

# �#

J1 ¼ �RR� �LL ¼ � ��"�5�# þ ��#�5�"
J2 ¼ i �R�5Rþ i �L�5L ¼ i ��"�5�# þ i ��#�5�"
J3 ¼ �R�zRþ �L�zL ¼ ��"�z�" þ ��#�z�#:

(3)

Here we have defined the 2 dimensional gamma matrices
as �0 ¼ �1, �z ¼ �i�2, �5 ¼ �3. Note that J0, J05 , J

3 and

J35 are expressed in terms of 2D densities and currents for

R and L, while J? and J?5 are expressed in terms of 2D

scalar and pseudoscalar condensates for R and L.
The fillings of right- and left-handed levels are shown in

Fig. 2 for the cases of nonzero chiral chemical potential
�5 ¼ �R ¼ ��L, and for nonzero chemical potential
� ¼ �R ¼ �L. Accounting for the appropriate branches
of the excitations, the dispersion relation for �5 � 0 is:

�5 � 0:R " :! ¼ p3 ��5; L " :! ¼ p3 þ�5

R # :! ¼ �p3 ��5; L # :! ¼ �p3 þ�5

(4)

while for � � 0:

� � 0:R " :! ¼ p3 ��; L " :! ¼ �p3 ��

R # :! ¼ �p3 ��; L # :! ¼ p3 ��:
(5)

For certain pairings, the up-moving and down-moving
plane waves e�ip3z acquire a phase difference because of

the chemical potential shift, which naturally leads to the
production of sinusoidal spatial modulations in the longi-
tudinal direction. We show below that these modulations
occur in the transverse components of the currents.
To introduce our extension of the chiral magnetic effect

to the transverse components of the currents, we recall
some important background for the dimensionally reduced
1þ 1 dimensional fermionic theories, such as the chiral
Gross-Neveu model. In these models, a chemical potential
�f for a given flavor spinor � leads to spiral behavior

[20,21] of the condensate � � ð ���Þ � ið ��i�5�Þ, which
combines the scalar and pseudoscalar condensate into a
single complex condensate. In these dimensionally re-
duced models, the density for a given flavor is simply �f ¼
�f

� , as fixed by the 1þ 1 dimensional chiral anomaly [21].

This follows because for a given flavor, �, a chemical
potential term in the Lagrangian can be generated by the

local chiral rotation � ! ei�f�
5z�, which implies ��i@6 � !

��i@6 ���f�
y�. Consideration of the effect of such a local

chiral rotation on the renormalized thermodynamical grand
potential �ren½T;�f� implies [21] �ren½T;�f� ¼
�ren½T;�f ¼ 0� ��2

f=ð2�Þ. Then the renormalized num-

ber density, �f ¼ �@�=@�f, is automatically given by

�f=�. Therefore, with �R ¼ �5

� and �L ¼ � �5

� , combined

with the Landau degeneracy factor eB
2� , we find from (2) the

nonzero expectation value hJ05i ¼ 1
2

eB
2�

2e�5

� [24], while

from (3) we have hJ0i ¼ 0. This is another way to under-
stand the usual chiral magnetic effect, in a way that em-
phasizes the physical factorization into the product of a
transverse Landau degeneracy factor and a longitudinal
one-dimensional density-of-states factor.
But this dimensionally reduced perspective also tells us

something new, about the transverse components of the
currents. From the Gross-Neveu models we know that
while the charge condensate �f ¼ �f

� is nonzero and ho-

mogeneous, the chiral condensate � generically has an
inhomogeneous spiral behavior as soon as we introduce a
chemical potential for that flavor, because the local chiral
rotation generates the transformation � ! e2i�fz�. Such
‘‘chiral spiral’’ condensates play a key role in dimension-
ally reduced 1þ 1 dimensional models [20–23].
To understand the implications of the chiral spiral for

3þ 1 dimensions, consider first the effect of a nonzero
chiral chemical potential �5 � 0, corresponding to �R ¼
�5 ¼ ��L. The fillings of the fermionic single-particle
levels for massless R and L particles are depicted in
Fig. 2, using the dispersion relations in (4). The imbalance
between right-handed and left-handed particles leads to the
‘‘chiral magnetic effect’’ [3–7], a charge separation along
the direction of the magnetic field. For example, as de-
picted in Fig. 1, in a region with a surplus of right-handed
zero modes, the positive charges necessarily have spin up
due to the LLL projection, and hence have positive mo-
mentum, while negatively charged right-handed particles
have spin down and hence negative momentum, thereby
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inducing a spatial separation of charge. This charge sepa-
ration is associated with a nonzero expectation value,
hJ3i ¼ eB

2�
e�5

� , computed in [3,6], reflecting the surplus of

right-handed particles leading to a surplus of right-handed
current along the x3 ¼ z direction. One also finds hJ05i ¼
eB
2�

e�5

� [6,7], and this is consistent with the axial anomaly,

as we can view an adiabatic chiral chemical potential�5 as
producing an effective electric field E� _�5, leading to the
anomaly equation by the usual spectral flow picture [19].

Our first new observation concerns the effect of a strong
magnetic field and nonzero �5 on the transverse compo-
nents of the axial vector and charge currents. In the longi-
tudinal direction there is no effect on the axial current,
hJ35i ¼ 0, because we assume the chirality imbalance oc-

curs homogeneously (i.e.,�5 is almost constant along the z
axis). On the other hand, we find nonzero expectation
values for the transverse components, hJ?5 i and hJ?i, of
both the axial and charge currents, and moreover these
have a characteristic spiral dependence on the longitudinal
coordinate, set by 2�5. To see this, recall that the disper-
sion relations for the massless fermions are linear (4), and
the nonzero �5 represents an imbalance in the fillings of R
and L fermion levels, as shown in Fig. 2. The free part of
the Lagrangian with nonzero �5 is:

L�5
¼ iR�þð@0þ@z� i�5ÞRþþ iR��ð@0�@z� i�5ÞR�

þ iL�þð@0þ@zþ i�5ÞLþþ iL��ð@0�@zþ i�5ÞL�:

Referring to Fig. 2, pairing occurs at the Fermi surface
betweenR particles with p3 ��5 andR holes with p3 �
��5, and between L particles with p3 ���5 and L
holes with p3 ��5. Thus the condensates �RR,
�Ri�5R, �LL and �Li�5L appearing in J? and J?5 have

momentum dependences displaced by ��5, leading to

hJ1i ¼ C2 cosð2�5z��RÞ �D2 cosð2�5zþ�LÞ
hJ2i ¼ �C2 sinð2�5z��RÞ þD2 sinð2�5zþ�LÞ
hJ15i ¼ C2 cosð2�5z��RÞ þD2 cosð2�5zþ�LÞ
hJ25i ¼ �C2 sinð2�5z��RÞ �D2 sinð2�5zþ�LÞ

(6)

for some constants C and D, and relative phases �R and
�L. This is consistent with the generation of chiral spiral
behavior of the chiral condensates of R and L spinors.
Now consider the opposite situation where we have a
particle-hole imbalance due to a real chemical potential
�. So, we take �5 ¼ 0 but � � 0, with �R ¼ � ¼ �L.
Then, according to [13–15], there is a net flow of chirality
along the direction of the magnetic field, characterized by
hJ35i � 0. This effect can be easily understood from (2) by

noticing that hJ35i � 0 is the difference between the spin

densities. Indeed, a direct LLL computation [13,18] shows
that hJ35i ¼ eB

2�
e�
� , in agreement with the 1þ 1 dimen-

sional charge condensate argument given above that �f ¼
�f=�. In this case, as opposed to the charge separation

effect when �5 � 0, for nonzero � there is a separation of
chirality. On the other hand, with nonzero�, if we consider
the charge current we find hJ3i ¼ 0, while hJ0i is nonzero.

FIG. 1. Sketch of the effect of the strong magnetic field
(directed upward in these figures) on the various spinor basis
elements. The circles denote the cyclotron orbits, the spin
direction is denoted by solid arrows, and the direction of mo-
mentum by dotted arrows. R� and L� label right- and left-
handed chirality with � direction of momentum along the B
field. The upper row, labeled on the left with a circled þ sign,
corresponds to positive charge in the lowest Landau level pro-
jection of spins aligned along the B field, while the lower row,
labeled on the left with a circled � sign, corresponds to negative
charge in the lowest Landau level projection of spins antialigned
with the B field.

FIG. 2 (color online). The dispersion diagrams relevant for the
case of nonzero �5 (upper figure) and for nonzero � (lower
figure). The associated fillings are described in the text.
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This is again due to assuming� is almost constant along z,
inside the collision region. The imbalance between holes
and quarks is homogeneous, resulting in vanishing current.
Our second new result is that the transverse components of
the axial and charge currents develop a similar spiral
inhomogeneity, now characterized by �. Once again, the
physical origin of the spiral dependence is the relation
between the energy imbalance and the momentum imbal-
ance through the dispersion relations for one-dimensional
massless fermions. The free part of the Lagrangian with
nonzero � is:

L� ¼ iR�þð@0 þ @z � i�ÞRþ þ iR��ð@0 � @z � i�ÞR�
þ iL�þð@0 þ @z þ i�ÞLþ þ iL��ð@0 � @z þ i�ÞL�:

Referring to Fig. 2, pairing occurs at the Fermi surface
between R particles with p3 �� and R holes with p3 �
��, and between L particles with p3 ��� and L holes

with p3 ��. Thus the condensates �RR, �Ri�5R, �LL
and �Li�5L appearing in J? and J?5 have momentum

dependence displaced by ��, leading to

hJ1i ¼ C2 cosð2�z��RÞ �D2 cosð2�z��LÞ
hJ2i ¼ �C2 sinð2�z��RÞ �D2 sinð2�z��LÞ
hJ15i ¼ C2 cosð2�z��RÞ þD2 cosð2�z��LÞ
hJ25i ¼ �C2 sinð2�z��RÞ þD2 sinð2�z��LÞ:

(7)

As before, this spiral behavior follows immediately from
the dimensionally reduced picture, once we have an im-
balance, which is here set by�. This also implies that with
both �5 and � being nonzero, we predict spiral conden-
sates for the transverse components of both the axial and
charge currents, with the wave numbers being determined
by both � and �5.

The spiral condensates automatically appear if the di-
mensionally reduced 1þ 1 dimensional theories are in a
chirally broken phase. Whether or not our results apply to
heavy ion experiments depends on the existence of suffi-
ciently strong magnetic fields at the stage when the chiral
symmetry is spontaneously broken. However, this is likely
to be the case at sufficiently small collision energy. Even at
high energy density, the presence of strong magnetic field
may induce the chiral condensate in strongly correlated
quark-gluon matter. If the chiral magnetic spiral is relevant
at the scales of heavy ion collisions, it could induce both
out- and in-plane fluctuating charge asymmetries. (The
separation of out- and in-plane fluctuations has been per-
formed recently [25] on the basis of STAR data [1,2].) It
should be kept in mind that the presence of magnetic field
increases the chiral transition temperature [17]. If topo-
logical fluctuations are present in the chirally broken phase
(e.g., due to the presence of metastable �0 domains [26]),
the CME current can be carried by the chiral magnetic
spiral.
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