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We investigate the transverse fluctuations of the confining string connecting two static quarks in

ð2þ 1ÞD SUð2Þ Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal

is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string

increases logarithmically with the distance between the static quark charges. Corrections at intermediate

distances due to universal higher-order terms in the effective string action are calculated analytically. They

accurately fit the numerical data.
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Understanding the dynamics of confining strings con-
necting static quarks and antiquarks in non-Abelian gauge
theories is a great challenge in strong interaction physics.
During its time evolution, a confining string sweeps out a
world sheet whose boundary is determined by the
world lines of the static external quark charges. The string
world sheet can also be viewed as an analog of a fluctuating
interface separating different phases of condensed matter.
Just like a rough interface, the confining string in a non-
Abelian gauge theory supports massless transverse fluctu-
ations. Interestingly, the dynamics of these fluctuations—
known as capillary waves in condensed matter physics—is
captured by a systematic two-dimensional low-energy ef-
fective field theory. In the effective theory, the string is

described by a (d� 2)-component vector ~hðx; tÞ pointing
to the location of the string world sheet in the (d� 2)
transverse dimensions of a d-dimensional space-time.
Here x 2 ½0; r� and t 2 ½0; �� are the Euclidean coordi-
nates parametrizing the base space, with r being the fixed
distance between the external static charges and the inverse
temperature � being the extent of Euclidean time. Since
the string ends at the static quark charges, its fluctuation

field obeys the boundary condition ~hð0; tÞ ¼ ~hðr; tÞ ¼ ~0.
The leading term in the action of the effective theory

S½ ~h� ¼ �

2

Z �

0
dt

Z r

0
dx @� ~h � @� ~h; � 2 f1; 2g; (1)

gives rise to a universal contribution to the static quark
potential

VðrÞ ¼ �r� �ðd� 2Þ
24r

þOð1=r3Þ; (2)

where� is the string tension. The universal Lüscher term is
proportional to the number (d� 2) of transverse directions
in which the string is fluctuating [1,2]. The effective action
from above also accounts for the string width [3]. Because
of its transverse fluctuations, the string broadens as the

quark sources are separated. More precisely the transverse
area swept out by the flux tube increases logarithmically
with separation. At the distance r=2 halfway between the
external static quark sources, at leading order the string has
the squared width

w2
loðr=2Þ ¼

d� 2

2��
log

�
r

r0

�
; (3)

where r0 is some distance scale. This fundamental formula
for the width is again universal. It applies to strings in
confining gauge theories, to fundamental strings, as well as
to fluctuating interfaces in condensed matter physics.
Interestingly, until now the logarithmic behavior of the
string width has been verified only in the context of spin
models. Below the critical temperature of the 3D Ising
model, but above the corresponding roughening transition,
an interface separating the broken phases indeed has
massless fluctuations described by the effective theory of
Eq. (1). Using an efficient cluster algorithm, the expression
for the width of Eq. (3) has been verified in [4]. By a duality
transformation, the results obtained in the 3D Ising model
also apply to ð2þ 1ÞD Abelian Zð2Þ lattice gauge theory,
where the effective theory has been confirmed in more
detail also using different boundary conditions [5].
Similar results have been obtained in a ð2þ 1ÞD Zð4Þ
gauge theory [6]. In non-Abelian gauge theories the mea-
surement of the string width is computationally very chal-
lenging; early calculations were affected by large statistical
errors and did thus not lead to definite conclusions [7].
In this Letter, for the first time we verify the logarithmi-

cally divergent string width for a non-Abelian gauge theory
by simulating ð2þ 1ÞD SUð2Þ lattice Yang-Mills theory
using a very efficient multilevel algorithm [8,9]. As we will
see, the Monte Carlo data agree with the analytic predic-
tion at large distances r. Before we turn to the numerical
results, we systematically work out corrections at inter-
mediate distances, which arise due to higher-order terms in

PRL 104, 232001 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
11 JUNE 2010

0031-9007=10=104(23)=232001(4) 232001-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.232001


the low-energy effective action. For d ¼ 3 there is only one
transverse dimension, and hence in this case hðx; tÞ 2 R is
a one-component scalar field. The leading and next-to-
leading terms in the low-energy effective action describing
the massless transverse fluctuations of the string are then
given by

S½h� ¼ �

2

Z �

0
dt

Z r

0
dx

�
@�h@�h� 1

4
ð@�h@�hÞ2

�
: (4)

Since the Dirichlet boundary conditions hð0; tÞ ¼ hðr; tÞ ¼
0 explicitly break translation invariance, one may have
expected boundary terms to be present in the effective
action as well [9]. Remarkably, due to open-closed string
duality, such terms are absent and the prefactor of the first
subleading term is uniquely determined [10]. A general-
ization of these arguments shows that for d ¼ 3 there is
only one six-derivative term which coincides with the one
of the Nambu-Goto action [11].

The effective action of Eq. (4) describes string fluctua-
tions in the continuum. Before one reaches the continuum
limit, the confining string in a lattice Yang-Mills theory is
also affected by lattice artifacts. First of all, at very strong
coupling the world sheet swept out by the lattice string is
rigid, i.e., it follows the discrete lattice steps and does not
even have massless excitations. Only at weaker coupling,
after crossing the roughening transition, the string
world sheet supports massless excitations and thus be-
comes rough. Consequently, the effective theory is appli-
cable only in the rough phase.

For a string world sheet with periodic boundary condi-
tions in Euclidean time, the squared width of the string is
given by

w2ðxÞ ¼ hhðx; tÞ2i; (5)

which is directly related to the two-point function
hhðx; tÞhðx0; t0Þi, with the two points (x, t) and (x0, t0) falling
on top of each other. This limit leads to ultraviolet diver-
gences which we regularize using the point-splitting pro-
cedure

hhðx; tÞ2i ! hhðx; tÞhðx0 ¼ xþ �; t0 ¼ tþ �0Þi: (6)

At the end, one sets � ! 0, �0 ! 0 and the remaining
ultraviolet divergent terms are absorbed in physical length
scales. In the leading order Gaussian approximation of
Eq. (1), the two-point function can be conveniently ex-
pressed in the form

hhðx; tÞhðx0; t0Þi ¼ 1

��

X1
n¼1

sinn�1 sinn�
0
1

e�n�2 þ qnen�2

nð1� qnÞ ;

(7)

where �1 ¼ �x=r, �0
1 ¼ �x0=r, �2 ¼ �ðt� t0Þ=rwith 0 �

�2 � ��=r. The parameter q ¼ e2�i� depends on the ratio
� ¼ i�=ð2rÞ. One then obtains the squared width of the
string as

w2
loðr=2Þ ¼

1

2��
log

�
r

r0

�
þ 1

��
log

�
�ð2�Þ
�ð�Þ2

�
; (8)

with r0 ¼ �j�þ i�0j=2 and the Dedekind function

�ð�Þ ¼ q1=24
Y1
n¼1

ð1� qnÞ: (9)

In the numerical simulations we put r � �. Then there are
only exponentially small corrections to the logarithmic
broadening of the width of the string. On the other hand,
for r � �, the inversion transformation property

�ð�Þ ¼ �ð�1=�Þ= ffiffiffiffiffiffiffiffiffi�i�
p

(10)

implies that

w2
loðr=2Þ ¼

1

2��
log

�
�

4r0

�
þ r

4��
þOðe�2�r=�Þ: (11)

This shows that, at finite temperature, the confining string
broadens linearly with the distance between the external
static quarks [12].
The non-Gaussian correction due to the first subleading

term in Eq. (4) results from the six-point function

�

8

�
h

�
r

2
;0

�
h

�
r

2
þ�;�0

��Z r

0
dx

Z �

0
dtð@�h@�hÞ2

��
: (12)

This amplitude has two kinds of ultraviolet divergent
terms: one proportional to logj�þ i�0j and the other pro-
portional to ð�2 � �02Þ=j�þ i�0j4. The former is absorbed
in the scale of the logarithm and the latter is eliminated by
putting �2 ¼ �02. Therefore the contribution to w2 of the
next-to-leading term does not require the introduction of
new low-energy parameters. Up to first order in the expan-
sion parameter 1=ð�r2Þ, the complete expression turns out
to be

w2ðr=2Þ ¼
�
1þ 4�fð�Þ

�r2

�
w2

loðr=2Þ �
fð�Þ þ gð�Þ

�2r2
;

fð�Þ ¼ E2ð�Þ � 4E2ð2�Þ
48

;

gð�Þ ¼ i��

�
E2ð�Þ
12

� q
d

dq

��
fð�Þ þ E2ð�Þ

16

�
þ E2ð�Þ

96
;

E2ð�Þ ¼ 1–24
X1
n¼1

nqn

1� qn
: (13)

Here E2ð�Þ is the first Eisenstein series. Just like the action,
the operator hðx; tÞ also receives higher-order corrections.
Remarkably, their effect vanishes in Eq. (13). The deriva-
tion of these results will be presented in [13].
Lattice gauge theory is a powerful tool that allows us to

address the question of string dynamics from first prin-
ciples. Since it is least problematical for numerical simu-
lations, we consider ð2þ 1ÞD SUð2Þ Yang-Mills theory on
a cubic lattice of size L� L� �, with the Euclidean time
extent � determining the inverse temperature. We use the
standard Wilson plaquette action
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S½U� ¼ � 2

g2
X
x;�;	

Tr½Ux;�Uxþ�̂;	U
y
xþ	̂;�U

y
x;	�; (14)

for parallel transporter variables Ux;� 2 SUð2Þ in the fun-

damental representation of the gauge group, located on the
links (x, �). Here g is the bare gauge coupling and �̂ is a
unit-vector pointing in the � direction. It should be noted
that all physical quantities are measured in units of the
lattice spacing which we put to 1. The partition function
takes the form

Z ¼
Z

DUe�S½U� ¼ Y
x;�

Z
SUð2Þ

dUx;�e
�S½U�; (15)

where dUx;� denotes the local gauge invariant Haar mea-

sure on the link (x, �). An external static quark located at
the site x is represented by a Polyakov loop

�x ¼ 1

2
Tr

�Y�
t¼1

Uxþt2̂;2

�
; (16)

a parallel transporter wrapping around the periodic
Euclidean time direction. We have chosen the 2 direction
to represent Euclidean time. When two external quark
charges are separated along the 1 direction, the
world sheet of the confining string extends in the space-
time directions � ¼ 1, 2, while the string fluctuates in the
transverse 3 direction. The static quark potential VðrÞ
results from the Polyakov loop correlation function

h�0�ri ¼ 1

Z

Z
DU�0�re

�S½U� � e��VðrÞ; (17)

in the zero-temperature limit � ! 1.
In order to ensure a good projection on the ground state

of the string and in order to cover a wide range of spatial
distances satisfying r < �, we have simulated at inverse
temperatures as large as� ¼ 48 in lattice units. The spatial
lattice size was L ¼ 54 and the bare gauge coupling was
chosen as 4=g2 ¼ 9:0 which puts the deconfinement
phase transition at �c 	 6. The numerical simulations
have been performed using the Lüscher-Weisz technique
[8,9] with two levels. We measure the static potential using
the Polyakov loop two-point function and we obtain
� ¼ 0:025 897ð15Þ for the string tension: this result is
compatible with the value reported in [14].

The width of the fluctuating string is obtained from the
connected correlation function

Cðx3Þ ¼ h�0�rPxi
h�0�ri � hPxi; (18)

of a pair of Polyakov loops with a single plaquette

Px ¼ 1

2
Tr½Ux;1Uxþ1̂;2U

y
xþ2̂;1

Uy
x;2�; (19)

in the 1-2 plane, which measures the color-electric field
along the 1 direction of the string as a function of the
transverse displacement x3. The plaquette is located at

the site x ¼ ðr=2; 0; x3Þ and thus measures the transverse
fluctuations of the color flux tube at the maximal distance
r=2 from the external quark charges. The correlation func-
tion at distance r ¼ 19 is illustrated in Fig. 1. The data
show the expected bell shape of a Gaussian distribution,
but their high numerical accuracy also reveals small devia-
tions. We fit the data using the ansatz

h�0�rPxi
h�0�ri

¼ A expð�x23=TÞ
1þ B expð�x23=TÞ
1þD expð�x23=TÞ

þ K;

(20)

where A, B, D, T, and K are fit parameters. This function
always provides an excellent fit of the data. The squared
width of the string is then obtained as the second moment
of the correlation function

w2ðr=2Þ ¼
R
dx3 x

2
3Cðx3ÞR

dx3 Cðx3Þ : (21)

In order to check the dependence of the measured string
width on the ansatz of Eq. (20), we have also considered
other fit functions. As long as the ansatz provided a very
good fit of the numerical data, we have not observed a
significant effect on the measured string width. Hence,
systematic uncertainties due to the fitting ansatz were
negligible compared to the statistical errors. In Fig. 2 we
illustrate the dependence of the squared string width
w2ðr=2Þ on the distance r between the external static
quarks. At distances larger than r 	 18, the Monte Carlo
data are well represented by the effective field theory
prediction of Eq. (13). In particular, the predicted prefactor
1=ð2��Þ of the logarithmic term logðr=r0Þ is confirmed by
the numerical data. It should be noted that the string
tension has already been determined by the fit to the static
quark potential. The only free parameter in the fit of the
Monte Carlo data for the width is the scale r0: we obtain
r0 ¼ 2:26ð2Þ such that r0

ffiffiffiffi
�

p ¼ 0:364ð3Þ.
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FIG. 1 (color online). The ratio h�0�rPxi=h�0�ri as a func-
tion of the transverse displacement x3 at fixed distance r ¼ 19
between the external static quarks. The solid line is a fit of the
numerical data using Eq. (20).
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It should be noted that the effective theory prediction of
Eq. (13) does not include lattice artifacts due to the viola-
tion of rotation invariance. Since the lattice theory is
invariant only under discrete rotations and not under the
full Poincaré group, before one reaches the continuum
limit the two additional terms

P
�¼1;2ð@�@�hÞ2 andP

�¼1;2ð@�hÞ4 enter the effective theory. Since these terms

contain four derivatives, they are of next-to-leading order.
Hence, they have no effect on the Lüscher term or on the
leading logarithmic behavior of the string width. The
corrections due to the rotation symmetry breaking terms
can be computed [13] and included in the fit for the string
width. This adds two free parameters and makes the fit
excellent down to r 	 10. However, an approximate esti-
mate of the correction to the string width coming from the
rotation invariant next-to-next-to-leading order may also
significantly improve the agreement in the range r ¼
10–18. Since, at the moment, we cannot clearly disentangle
these two effects, we have not taken into account rotation
symmetry breaking corrections in our data analysis.

In the numerical results discussed so far, the plaquette
orientation was parallel to the string world sheet. The
plaquette acts as a probe that measures the fluctuations of
the confining string. The width depends on the probe
through the value of the low-energy parameter r0.
Choosing different probes—and thus different ways of
defining the string width—we expect, however, only small
changes in the value of the low-energy parameter r0. In
order to investigate this issue, we have considered different
orientations of the plaquette in the definition of Eq. (18). In
Fig. 3 we show the normalized probability distribution
Cðx3Þ=

R
dx3Cðx3Þ for the 3 different orientations of the

plaquette at fixed distance r ¼ 12 between the external
static quarks. The numerical data show that the normalized
probability distribution is not significantly affected by the

different probes used to extract the color flux tube width.
Early investigations in 4D can be found in [15].
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FIG. 2 (color online). The squared width of the confining
string w2ðr=2Þ at its midpoint as a function of the distance r
between the external quark charges. The solid curve is a fit to the
next-to-leading order prediction of the low-energy effective field
theory from Eq. (13).
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FIG. 3 (color online). Probability distribution Cðx3Þ=
R
dx3

Cðx3Þ using the three possible orientations of the plaquette in
Eq. (18). The data points for the two orientations orthogonal to
the string world sheet are put at the midpoint between two lattice
sites.
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