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We analyze nonperturbative corrections to the superpotential of seven-brane gauge theories on type IIB

and F-theory warped Calabi-Yau compactifications. We show, in particular, that such corrections modify

the holomorphic Yukawa couplings by an exponentially suppressed contribution, generically solving the

Yukawa rank-one problem of certain F-theory local models. We provide explicit expressions for the

nonperturbative correction to the seven-brane superpotential, and check that it is related to a non-

commutative deformation to the tree-level superpotential via a Seiberg-Witten map.

DOI: 10.1103/PhysRevLett.104.231601 PACS numbers: 11.25.Mj, 11.25.Uv, 11.25.Wx, 12.15.Ff

Within string theory, reproducing the standard model of
particle physics (SM) or extensions thereof has proven to
be a complex and challenging quest. This complexity is
partly due to the different appearance of string vacua in
diverse corners of the string landscape, providing not one
but many possible paths to reproduce the SM as an effec-
tive theory. Rather than a drawback, this diversity of sce-
narios and the web of dualities relating them can be used to
render the quest less challenging. Nevertheless, reproduc-
ing the qualitative and quantitative features of the SM still
remains a nontrivial task.

A good example of the latter is given by the observed
hierarchical fermion masses and mixing angles, which any
realistic string model should reproduce via an appropriate
set of Yukawa couplings. While in each corner of the string
landscape the nature and characteristics of Yukawa cou-
plings are quite different, in practice none of the scenarios
built so far provides a schemewhere a viable set of Yukawa
couplings can be derived in a simple, natural way.

In this regard, an interesting arena where such a scheme
could be developed is the local F-theory scenario recently
introduced in [1], which realizes the idea of grand unifica-
tion from a bottom-up approach. Indeed, as proposed in [2]
(see also [3–5]), an appealing class of models would be
those whose holomorphic Yukawa matrix has rank one, so
that just one family of quarks and leptons develops a mass
[6]. While this would be a promising starting point to
reproduce the mass hierarchy between the third and first
two families of SM fermions, in realistic models the light-
est two families need to be massive as well. One then needs
to find a source of Yukawa couplings for these two fami-
lies, which should then provide a small correction to the
rank-one piece. While such corrections were initially
thought to be built-in within local F-theory constructions,
it has been shown in [4] not to be the case, and so in order
to solve this problem the tree-level seven-brane superpo-
tential W tree of [1] should be modified by external effects.

The aim of this note is to show that nonperturbative
effects can address this rank-one Yukawa problem in the
spirit of [2] in a rather natural way, by simply adding to

W tree a nonperturbatively generated contribution Wnp. In
addition, we will argue that nonperturbative effects are the
most important source of corrections to the holomorphic
Yukawa couplings, at least in the context where the local
F-theory models above were initially formulated.
The source of nonperturbative effects modifying the

Yukawa couplings will be nothing but the F-theory ana-
logues of type II D-brane instantons, whose effect on 4d
effective theories has recently generated a lot of activity
[8]. Indeed, that such a mechanism could work was pro-
posed in [9], in the rather different context of the intersect-
ing D6-brane models built in [10] and sharing the same
rank-one problem. While this initial proposal does not
seem to work for such D6-brane models, we will see
that, when applied to F-theory grand unification theories,
it provides a universal modification W tree ! W tree þWnp.
Moreover, as the actual expression for Wnp turns out to be
rather simple, this allows the computation of its effect in an
explicit way, granting the necessary predictive power to the
present proposal.
In order to motivate our expression for Wnp let us first

consider type IIB string theory on the warped background
R1;3 �! M6, with O3 and O7 planes, as in [11,12]. In
addition, let us consider n space-time filling D7 branes
wrapping a four-cycle �np

4 �M6, and such that their 4d
effective field theory develops a gaugino condensate. If we
now consider a D3-brane filling R1;3 and placed at a point
zD3 (in complex coordinates) on M6, it will develop a
superpotential of the form [13–15]

W
np
D3 ¼ �3Ae�T�=nfðzD3Þ1=n; (1)

where T� ¼ V�
np
4
þ i

R
�np

4
C4 is the complexified Kähler

modulus corresponding to the four-cycle �
np
4 , and f stands

for a holomorphic section of the divisor bundle specifying
�np

4 , with no poles and such that it vanishes on �np
4 . In

addition, �p ¼ ð2�Þ�p�0�ðpþ1Þ=2 is the tension of a

Dp-brane andA is a holomorphic function of the complex
structure moduli of M6. This function can actually be
considered a constant if supersymmetric three-form fluxes
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G3 ¼ F3 þ �H3 are introduced, since they lift the complex
structure moduli of M6 via a closed string superpotential
[16,17]. Note, however, that no extra superpotential is
generated for the D3-brane in the presence of these fluxes,
and so the result (1) remains unaffected. Alternatively,
instead of a gaugino condensing D7-brane we may con-
sider an isolated Euclidean D3-brane instanton wrapping
the same four-cycle �

np
4 , provided that it contains the

appropriate number of fermionic zero modes [18]. The
superpotential generated by such an instanton is again
given by Eq. (1), now with n ¼ 1. For simplicity, in the
following we will focus on this latter possibility.

In order to understand the superpotential (1) in terms of
the 4d D3-brane gauge theory, we need to Taylor expand
fðzÞ around the D3-brane location zD3, and then express
such expansion as D3-brane complex fields �i

D3 ¼ �ðzi �
zD3Þ, with � ¼ 2��0. We thus obtain

W
np
D3 ¼ �3Ae�T�ðfjzD3 þ ��i½@zif�zD3 þ . . .Þ: (2)

The same philosophy applies to a stack of N D3 branes.
The superpotential (1) naturally generalizes to

W
np
D3 ¼ �3Ae�T�½detfðZD3Þ�; (3)

where ZD3 is now made up of N � N complex matrices.
Expanding Zi

D3 ¼ ziD31N þ ��i, we have

W
np
D3 ¼ �3Ae�T�fjNzD3f1þ �Trð�iÞ½@zi logf�zD3 þ . . .g;

(4)

where N is the D3-brane charge of the system.
Let us now replace the D3 branes at zD3 by a stack of D7

branes onR1;3 � S4, where S4 is a compact, complex four-
cycle with no intersection with �

np
4 , and with a nontrivial

world-volume flux F ¼ dA� i
2 ½A; A� along S4. Since S4

and �
np
4 are physically separated, we can treat the four-

cycle S4 as a smeared source of D3-brane, whose total
charge is given byND3 ¼

R
S4
TrðF ^ FÞ=8�2 2 N. Such a

smeared source will backreact on both the Ramond-
Ramond (RR) potential C4 and the warp factor, implying
that the D3-instanton action (whose real part is the warped
volume of �np

4 ) will depend on the D7-brane moduli.

Adapting the analysis of [15], one is led to the conclusion
that a D7-brane on S4 should develop a nonperturbative
superpotential of the form

Wnp
D7 ¼ �3Ae�T� exp

�
1

8�2

Z
S4

StrðlogfF ^ FÞ
�
; (5)

where Str indicates the symmetric trace.W
np
D7 is to be added

to the tree-level superpotential [19]

W tree
D7 ¼ 2��0�7

Z
�5

Str� ^ F; (6)

where �5 is a 5-chain connecting S4 and a reference four-
cycle, and F is a proper extension of the D7-brane world-
volume flux on �5.

The non-Abelian expressions (5) and (6) can be made
more precise by expanding them around a holomorphic
embedding S4. Introducing local coordinates (u, v, w)

such that S4 is described by w ¼ 0, we can expand W
np
D7

in the complex, non-Abelian field � ¼ 2��0w. Since fjS4

is a holomorphic function with no poles and zeros on the
compact divisor S4, it is in fact a complex constant that can
be pulled out of the integral, and so the first term of this
expansion will be the constant. Then, up to second order
terms in �, the nonperturbative superpotential (5) is given
by

Wnp
D7 ¼ �3Ae�T�fjND3

S4
þ �3

8�2

Z
S4

�Strð�F ^ FÞ þ . . .

(7)

with � :¼ �Ae�T�ðfND3@w logfÞjS4
. Adding up W tree

D7 and

Wnp
D7 and neglecting constant contributions, we obtain

WD7 ¼ �3

4�2

Z
S4

�
ð�w�Þ ^ Trð�FÞ þ 1

2
�Strð�F2Þ þ . . .

�
;

(8)

where we have kept only linear terms in � [20].
Besides warping and C4, a D7-brane also sources the

dilaton and the RR potential C0. Its backreaction is then
more involved thanND3 smeared D3 branes, a fact which in
principle could complicate the above analysis. However,
such extra fields do not enter into the action of an instan-
tonic D3-brane wrapping �np

4 , whenever its world-volume

flux F vanishes. Hence, this additional backreaction does
not change the computation above, and so the nonpertur-
bative superpotential indeed reduces to (5). The same
statement applies to n condensing D7 branes with vanish-
ing world-volume flux, for which (5) can be trivially
extended.
As advanced, the D7-brane superpotential (8) splits as

W tree
D7 þW

np
D7, the first piece being the superpotential con-

sidered in [1] and the second piece a nonperturbative
correction. Note that Wnp

D7, compared to W tree
D7 , contains an

extra factor � of dimension ðlengthÞ2. This compensates the
higher dimensional integrand Strð�F ^ FÞ from which we
can extract a coupling of up to five fields. Corrections to the
tree-level Yukawa couplings then arise from terms involv-
ing only three fluctuations, like

Z
S4

�	i�|k
�lStrð�DiA�|DkA�lÞ (9)

(Dk ¼ @k þ ihAki^ not containing any fluctuation), as well
as from deformations of the tree-level wave function pro-
file induced by the presence of W

np
D7.

The corrected superpotential (8) admits an interesting
interpretation, inspired by some observations made in [21].
There, it was proposed to encode nonperturbative correc-
tions to D-brane superpotentials in terms of deformations
of the bulk geometry as seen by D branes. In the case at
hand, the correction would be encoded in a 
 deformation
of the internal complex structure. Indeed, in the type IIB
and F-theory backgrounds of [11,12] there is an integrable
complex structure specified by the holomorphic (3, 0)-form
�. A 
 deformation replaces � by the more general pure
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spinor odd polyform Z [22,23]

Z ¼ Z1 þZ3 with Z3 ¼ �; Z1 ¼ 
⌋�; (10)

where ð
⌋�Þk ¼ 1
2


ij�ijk. Here 
 ¼ 1
2


ij@zi ^ @zj þ c:c:

is a ð2; 0Þ þ ð0; 2Þ real bivector whose (2, 0) component is
holomorphic, and defines a Poisson structure. Since inte-
grability imposes that dZ ¼ 0, we can locally write Z3 �
� ¼ @�2 and Z1 ¼ @�0. Hence, using the superpotential
for Abelian D7 branes derived in [19] we obtain

WD7 ¼ 2��0�7

Z
S4

ð��0�0F ^ Fþ �2 ^ FÞ þ const:;

(11)

which, appropriately choosing the additional constant, re-
produces the Abelian version of (8) by simply taking �0 ¼
Ae�T�fND3=ND3 [24]. Now, as argued in [25,26], on a D-
brane world-volume the effect of a 
 deformation can be
seen as a noncommutative deformation of the gauge theory.
All this suggests that the nonperturbative correction to the
D7-brane superpotential (5) should be equivalent to non-
commutative deformation of the tree-level piece, via the
standard Seiberg-Witten map [27].

Indeed, to connect our results with those in [25], let us
consider the superpotential (11). Recalling that d�2 ¼ �
and d�0 ¼ 
⌋�, the F-flatness conditions read

�jS4
^ Fþ�jS4

¼ 0

ð�X�ÞjS4
F2 þ 2ð�X�ÞjS4

^ F ¼ 0 8 X 2 TMjS4
; (12)

where � ¼ 2��0
⌋�. The first F-flatness condition is
automatically satisfied in our previous setup, since S4

was chosen to be a divisor (so that �jS4
¼ 0) while �0

was a constant function on S4, and thus �jS4
¼ 0. The

second condition in (12) can be rewritten in a more explicit
way by taking again the local system of coordinates (u, v,
w). In this system 
⌋�jS4

¼ 0 implies 
vwjS4
¼


uwjS4
¼ 0. Then, defining the bivector � � 2��0
jS4

,

one can show that the second condition in (12) is equiva-
lent to

FIþ ITF ¼ �FðI�þ�ITÞF (13)

with I the complex structure associated to �. As shown in
[25], Eq. (13) is nothing but the current-matching condition
for a B-brane in the 
-deformed topological theory.

It was shown in [25] that (13) is equivalent to F̂ð0;2Þ ¼ 0,

F̂ the noncommutative field-strength constructed via the
Seiberg-Witten (SW) map [27]. We now show that this
relation can be extended off shell, deriving from (8) the
noncommutative superpotential used in [4,28].

Choosing again local coordinates such that � ¼ du ^
dv ^ dw, we have that�¼�@u^@vþc:c:We would then
expect to arrive to a noncommutative superpotential of the
form (omitting overall dimensionful constant factors)

Ŵ D7 ¼
Z
S4

Trð’̂ ⊛ F̂Þ; (14)

where ’̂ ¼ �̂du ^ dv, and ⊛ and F̂ are noncommutative

deformations of the ordinary wedge product and field
strength, respectively (see below).
Let us start by assuming that we have a constant � ¼ �0,

as in [25], so that the standard SW map of [27] can be
applied. In this case ⊛ can be simply obtained from the
ordinary wedge product by multiplying the components of
forms using the ordinary Moyal � product defined by the

bivector �, and F̂�
 ¼ @�Â
 � @
Â� � iðÂ� � Â
 �
Â
 � Â�Þ. We can now apply the non-Abelian SW map

F̂�
 ¼ F�
 þ��½fF�; F�
g
þ 1

2fA; ðD� þ @�ÞF�
g� þOð�2Þ;
� ¼ �þ 1

2�
�
fA�; ðD
 þ @
Þ�Þg þOð�2Þ

(15)

with D�F
 ¼ @�F
 � i½A�; F
�, D�� ¼ @���
i½A�;��, and where the action of the SW map on scalars
� can be obtained by consistency with T duality. Plugging
these definitions into (14), and keeping only terms up to
order �0 and ��0, we indeed get the superpotential (8),
providing the equivalence up to this order.
In order to allow for a nonconstant �, one can follow the

strategy of [4], and choose a holomorphic frame eI ¼
feU; eVg (with ½eI; eJ� ¼ ½eI; e �J� ¼ 0) in which � ¼
�0eU ^ eV þ c:c:, with �0 again constant (see
Appendix B of [4] for further details). Then the extension
of the ordinary Moyal product is given by

f � g ¼ feði�0=2Þ	IJðe
 
I�e!JÞeði ��0=2Þ	

�I �Jðe �I�e! �JÞg (16)

and the noncommutative wedge product ⊛ by expanding

the forms in the coframe eI, e
�I and applying the above �

product to the components. For instance, given a (1,0)-

form � ¼ �Ie
I and a (0,1)-form 
 ¼ 
 �Ie

�I, we have

� ⊛ 
 ¼ ð�I � 
 �JÞeI ^ e
�J: (17)

Working in the basis eI, e �I, one can thus extend the above
SW map to these cases with nonconstant � and show that,
up to first order in �, the noncommutative superpotential
(14) is equivalent to (8).
Note that the above noncommutative products � and ⊛

(when applied to nonholomorphic functions) do not coin-
cide with the ones introduced in [4], denoted �h and ⊛h in
the following. The key difference is that �h and⊛h involve
only the holomorphic (2, 0) component of �, �2;0 ¼
�@u ^ @v. For instance,

f �h g ¼ feði�0=2Þ	IJðe
 
I�e!JÞg: (18)

In particular, [4] used the following superpotential

~W D7 ¼
Z
S4

Trð~’ ⊛h
~FÞ (19)

with ~F0;2 ¼ �@A0;1 � i
2 ½A0;1; A0;1��h , in order to solve the

rank-one Yukawa problem. It would thus seem that both
deformations of the tree-level superpotential are unrelated.
This is however not the case, since (14) and (19) are related
by an antiholomorphic SW map. Let us explicitly discuss
the case of constant �� ¼ ��0, the general case being analo-
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gous by the remarks of the previous paragraph. Then the

antiholomorphic SW map, taking ~F0;2 and ~� into F̂0;2 and

�̂, is again of the form (15), with the substitutions �!
�0;2 ¼ ��0@ �u ^ @ �v, F ! ~F0;2, �! ~� and all products
built with �h on its right-hand side. This map indeed

preserves the complexified gauge transformations �̂Â0;1 ¼
�@ �̂�i½Â0;1; �̂�⊛ and ~� ~A0;1 ¼ �@ ~��i½ ~A0;1; ~��⊛h

, which are

symmetries of (14) and (19) respectively. One can then
check that, up to first order in ��0 and to all orders in �0, (14)
is indeed mapped to (19).

To summarize, we have provided evidence that non-
perturbative effects generated by Euclidean D3 branes or
gaugino condensing D7 branes produce a simple but inter-
esting correction to the superpotential of D7-brane gauge
theories. Moreover, by applying the approach of [15] to
magnetized D7 branes, we have derived an explicit, gen-
eral expression for such corrections. It would however be
interesting to check this result by means of a direct con-
formal field theory computation, along the lines of [9,14].

Even if our discussion was carried in the type IIB con-
text, it can be easily extended to F theory. In particular, it
can be applied to F-theory grand unification theory models
with rank-one Yukawa couplings in order to lift their
degeneracies. Note that nonperturbative corrections to the
tree-level Yukawa matrix are exponentially suppressed, so
they can be treated as a small correction to Ytree

ijk . Moreover,

the simple expression obtained forWnp allows us to carry a
systematic analysis of the textures that Wnp may give rise
to, a task that we leave for future work.

We have also identified via a SW map this nonperturba-
tive correction with a noncommutative deformation of the
initial, tree-level superpotential. We have, in particular,
recovered, to first order in �, the noncommutative defor-
mation considered in [4]. As pointed out there, such de-
formation generically solves the Yukawa rank-one problem
in F theory, in agreement with our expectations. In [4] the
source for such noncommutative deformation was advo-
cated to a tree-level effect due to the presence of back-
ground 3-form fluxes. This possibility is however excluded
for the no-scale F-theory flux backgrounds of [12,29]
where the models of [1,4] are formulated. Indeed, we
have seen that the noncommutative deformation (19) is
equivalent to a seven-brane superpotential piece of the
form (7), and it is easy to convince oneself that [19]

W tree
D7 �

Z
S4

Strð�0F ^ FÞ , W tree
D3 ¼ �0; (20)

�0 being a holomorphic function to be Taylor expanded. In
[12,29], W tree

D3 ¼ 0 and D3-brane superpotentials can only

be generated at the nonperturbative level [15], so such
noncommutative deformation can only have a nonpertur-
bative origin, as we obtain from our setting.
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[3] A. Font and L. E. Ibáñez, J. High Energy Phys. 09 (2009)

036.
[4] S. Cecotti, M. C. N. Cheng, J. J. Heckman, and C. Vafa,

arXiv:0910.0477.
[5] J. P. Conlon and E. Palti, arXiv:0910.2413.
[6] The rank-one scenario assumes that down- and up-type

Yukawa couplings arise each from a single point of triple
intersection of matter curves. Difficulties in building such
a setting for the latter have been recently pointed out in
[7].

[7] H. Hayashi, T. Kawano, Y. Tsuchiya, and T. Watari,
arXiv:0910.2762; C. Cordova, arXiv:0910.2955.

[8] For a review see R. Blumenhagen, M. Cvetič, S. Kachru,
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(2005).
[15] D. Baumann et al., J. High Energy Phys. 11 (2006) 031.
[16] S. Gukov, C. Vafa, and E. Witten, Nucl. Phys. B584, 69

(2000); B608, 477(E) (2001).
[17] K. Dasgupta, G. Rajesh, and S. Sethi, J. High Energy Phys.

08 (1999) 023.
[18] E. Witten, Nucl. Phys. B474, 343 (1996).
[19] L. Martucci, J. High Energy Phys. 06 (2006) 033.
[20] Taking global properties of the holomorphic normal

bundle into account, W tree
D7 may also contain quadratic

terms on � whenever F � 0. These terms, not visible in
our local analysis, can be easily incorporated into Eq. (8).

[21] P. Koerber and L. Martucci, J. High Energy Phys. 08
(2007) 059.

[22] M. Gualtieri, arXiv:math/0401221.
[23] This description of 
 deformations should be understood

as a deformation of the full type IIB supergravity back-
ground in which IASD 3-form fluxes are turned on, as in
[11].

[24] Note that this description breaks down at �
np
4 , since

@ �@ lnj�0j2 is a �-function 2-form with support on �
np
4 .

[25] A. Kapustin, Int. J. Geom. Methods Mod. Phys. 1, 49
(2004).

[26] V. Pestun, Adv. Theor. Math. Phys. 11, 399 (2007).
[27] N. Seiberg and E. Witten, J. High Energy Phys. 09 (1999)

032.
[28] This derivation applies not only to the nonperturbative

superpotential (8), but to any superpotential of the form
(11) arising from general 
-deformed complex spaces.

[29] K. Becker and M. Becker, Nucl. Phys. B477, 155
(1996).

PRL 104, 231601 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
11 JUNE 2010

231601-4

http://arXiv.org/abs/0802.2969
http://dx.doi.org/10.1088/1126-6708/2009/01/058
http://dx.doi.org/10.1088/1126-6708/2009/01/058
http://dx.doi.org/10.1088/1126-6708/2009/01/059
http://arXiv.org/abs/0811.2417
http://dx.doi.org/10.1088/1126-6708/2009/09/036
http://dx.doi.org/10.1088/1126-6708/2009/09/036
http://arXiv.org/abs/0910.0477
http://arXiv.org/abs/0910.2413
http://arXiv.org/abs/0910.2762
http://arXiv.org/abs/0910.2955
http://arXiv.org/abs/0902.3251
http://dx.doi.org/10.1088/1126-6708/2007/10/034
http://dx.doi.org/10.1088/1126-6708/2007/10/034
http://arXiv.org/abs/hep-ph/0212048
http://arXiv.org/abs/hep-ph/0212048
http://dx.doi.org/10.1088/1126-6708/2003/07/038
http://dx.doi.org/10.1103/PhysRevD.63.026001
http://dx.doi.org/10.1103/PhysRevD.63.026001
http://dx.doi.org/10.1103/PhysRevD.66.106006
http://dx.doi.org/10.1103/PhysRevD.66.106006
http://dx.doi.org/10.1016/S0550-3213(97)00311-8
http://dx.doi.org/10.1103/PhysRevD.71.026005
http://dx.doi.org/10.1103/PhysRevD.71.026005
http://dx.doi.org/10.1088/1126-6708/2006/11/031
http://dx.doi.org/10.1016/S0550-3213(00)00373-4
http://dx.doi.org/10.1016/S0550-3213(00)00373-4
http://dx.doi.org/10.1016/S0550-3213(01)00289-9
http://dx.doi.org/10.1088/1126-6708/1999/08/023
http://dx.doi.org/10.1088/1126-6708/1999/08/023
http://dx.doi.org/10.1016/0550-3213(96)00283-0
http://dx.doi.org/10.1088/1126-6708/2006/06/033
http://dx.doi.org/10.1088/1126-6708/2007/08/059
http://dx.doi.org/10.1088/1126-6708/2007/08/059
http://arXiv.org/abs/math/0401221
http://dx.doi.org/10.1142/S0219887804000034
http://dx.doi.org/10.1142/S0219887804000034
http://dx.doi.org/10.1088/1126-6708/1999/09/032
http://dx.doi.org/10.1088/1126-6708/1999/09/032
http://dx.doi.org/10.1016/0550-3213(96)00367-7
http://dx.doi.org/10.1016/0550-3213(96)00367-7

