
Screening Long-Range Forces through Local Symmetry Restoration

Kurt Hinterbichler and Justin Khoury

Center for Particle Cosmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
(Received 19 February 2010; published 10 June 2010)

We present a screening mechanism that allows a scalar field to mediate a long-range (�Mpc) force of

gravitational strength in the cosmos while satisfying local tests of gravity. The mechanism hinges on local

symmetry restoration in the presence of matter. In regions of sufficiently high matter density, the field is

drawn towards � ¼ 0 where its coupling to matter vanishes and the � ! �� symmetry is restored. In

regions of low density, however, the symmetry is spontaneously broken, and the field couples to matter

with gravitational strength. We predict deviations from general relativity in the solar system that are within

reach of next-generation experiments, as well as astrophysically observable violations of the equivalence

principle. The model can be distinguished experimentally from Brans-Dicke gravity, chameleon theories

and brane-world modifications of gravity.
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Scalar fields are the simplest of fields. Light, gravita-
tionally coupled scalars are generically predicted to exist
by many theories of high energy physics. These scalars
may play a crucial role in dark energy as quintessence
fields, and generically arise in infrared-modified gravity
theories [1–7]. Despite their apparent theoretical ubiquity,
no sign of such a fundamental scalar field has ever been
seen, despite many experimental tests designed to detect
solar system effects or fifth forces that would naively be
expected if such scalars existed [8,9].

Several broad classes of theoretical mechanisms have
been developed to explain why such light scalars, if they
exist, may not be visible to experiments performed near the
Earth. One such class, the chameleon mechanism [5,6],
operates whenever the scalars are nonminimally coupled to
matter in such a way that their effective mass depends on
the local matter density. Deep in space, where the local
mass density is low, the scalars would be light and would
display their effects, but near Earth, where experiments are
performed, and where the local mass density is high, they
would acquire a mass, making their effects short range and
unobservable.

Another such mechanism, the Vainshtein mechanism
[10], operates when the scalar has derivative self-couplings
which become important near matter sources such as Earth.
The strong coupling near sources essentially cranks up the
kinetic terms, which means, after canonical normalization,
that the couplings to matter are weakened. Thus the scalar
screens itself and becomes invisible to experiments. This
mechanism is central to the phenomenological viability of
brane-world modifications of gravity [1,2] and galileon
scalar theories [3].

In this Letter, we explore a third class of mechanisms for
hiding a scalar. A similar framework was studied in [11,12]
with different motivations, and some of the results below
overlap with these works. In this mechanism, the vacuum
expectation value (VEV) of the scalar depends on the local

mass density, becoming large in regions of low mass
density, and small in regions of high mass density. In
addition, the coupling of the scalar to matter is proportional
to the VEV, so that the scalar couples with gravitational
strength in regions of low density, but is decoupled and
screened in regions of high density.
This is achieved through the interplay of a symmetry-

breaking potential, Vð�Þ ¼ ��2�2=2þ ��4=4, and uni-
versal coupling to matter, �2�=2M2. In vacuum, the scalar

acquires a VEV �0 ¼ �=
ffiffiffiffi
�

p
, which spontaneously breaks

the Z2 symmetry � ! ��. In the presence of sufficiently
high ambient density, however, the field is confined near
� ¼ 0, and the symmetry is restored. In turn, �� fluctua-
tions couple to matter as ð�VEV=M

2Þ���, and so are
weakly coupled in high density backgrounds and strongly
coupled in low density backgrounds. Since the screening
mechanism relies on the local restoration of a symmetry,
we refer to the scalar as a symmetron field.
The model predicts a host of observational signatures.

The solar light-deflection and time-delay deviations from
general relativity (GR) are just below currents bound and
within reach of next-generation experiments. Meanwhile,
the expected signal from binary pulsars is much weaker,
because neutron stars and their companions are screened.
This is unlike standard Brans-Dicke (BD) theories, where
solar system and binary pulsar signals are comparable. The
symmetron observables are similarly distinguishable from
standard chameleon and Vainshtein predictions. The sym-
metron also results in apparent violations of the equiva-
lence principle between large (screened) galaxies and
small (unscreened) galaxies [13].
There are key differences with [11,12], with crucial

phenomenological implications. Because the symmetron
is universally coupled, we need not impose that Earth and
its atmosphere be screened, unlike [11]. Instead, we show
that a much weaker condition, namely, that the Milky Way
(and the Sun) be screened but not Earth, suffices to satisfy
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all local tests. This allows for longer range symmetron-
mediated force. Compatibility with local tests of gravity
was not considered in [12].

I. The model.—Start with the general case of the cha-
meleon model [5], with metric signature (� , þ, þ, þ),

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

Pl

2
R� 1

2
ð@�Þ2 � Vð�Þ

�

þ
Z

d4xLm½~g�; (1)

where the matter fields described by Lm are universally
coupled to the metric ~g��, conformally related to the

Einstein frame metric g�� by

~g�� ¼ A2ð�Þg��: (2)

The scalar field equation of motion is

h�� V;� þ A3ð�ÞA;�
~T ¼ 0; (3)

where ~T ¼ ~T��~g
�� is the trace of the Jordan frame energy

momentum tensor, ~T�� ¼ �ð2= ffiffiffiffiffiffiffi�~g
p Þ�Lm=�~g

��, which

is covariantly conserved: ~r�
~T�
� ¼ 0.

We will be interested mostly in solar system and galactic
scenarios, so we ignore the effects of nonlinearities in
gravity and backreaction of the scalar field on gravity,
allowing us to treat the (nonlinear) scalar on its own. For
astrophysical objects, we may use the idealization of
spherically symmetric pressureless sources. Written in
terms of the density � ¼ A3 ~�, which is conserved in
Einstein frame, the scalar field equation takes the form

d2

dr2
�þ 2

r

d

dr
� ¼ V;� þ A;��: (4)

For cases of roughly homogeneous �, such as the interior
or exterior of a star or galaxy, the field thus evolves
according to an effective potential

Veffð�Þ ¼ Vð�Þ þ �Að�Þ: (5)

For the symmetron model of interest, we choose

Vð�Þ ¼ � 1

2
�2�2 þ 1

4
��4; Að�Þ ¼ 1þ 1

2M2
�2;

(6)

described by two mass scales, � and M, and one dimen-
sionless coupling �. The mass term in Vð�Þ is negative, so
that the Z2 symmetry � ! �� is spontaneously broken.
The effective potential is, up to an irrelevant constant,

Veffð�Þ ¼ 1

2

�
�

M2
��2

�
�2 þ 1

4
��4: (7)

Whether the quadratic term is negative or not, and hence
whether the Z2 symmetry is spontaneously broken or not,
depends on the local matter density. Outside the source,
where � ¼ 0, the potential breaks reflection symmetry

spontaneously, and the scalar acquires a VEV �0 �
�=

ffiffiffiffi
�

p
. Inside the source, if we choose parameters such

that � >M2�2, the effective potential no longer breaks the
symmetry, and the VEV goes to zero.
An essential feature is that the lowest order coupling of

matter to the symmetron is ���2=M2. Fluctuations ��
around a local background value �VEV, as would be de-
tected by local experiments, therefore couple as

��VEV

M2
���; (8)

that is, the coupling is proportional to the local VEV. In
high-density, symmetry-restoring environments, the VEV
should be near zero and fluctuations of� should not couple
to matter. In rarified environments, where � <M2�2, the
symmetry is broken and the coupling turns back on.
To fix scales, we will be mainly interested in the case

where the field becomes tachyonic around the current
cosmic density: H2

0M
2
Pl ��2M2. This fixes � in terms of

M, and hence the mass m0 of small fluctuations around

�0 ¼ �=
ffiffiffiffi
�

p
:

m0 ¼
ffiffiffi
2

p
��MPl

M
H0: (9)

Local tests of gravity, as we will see, require M &
10�3MPl. Hence the range m�1

0 of the symmetron-

mediated force in voids is& Mpc. Meanwhile, if this extra
force is to be comparable to gravity, then from (8) we must
impose �0=M

2 � 1=MPl, that is,

�0 � �ffiffiffiffi
�

p � M2

MPl

: (10)

Together with (9), this gives ��M4
PlH

2
0=M

6 � 1. Note
that �0 � M, hence the field range of interest lies within
the regime of the effective field theory, and higher-order
�2=M2 corrections to Að�Þ can be neglected.
II. Spherical solutions.—In order to model these effects

in and around astrophysical objects, we search for spheri-
cally symmetric solutions to (4) given (6). The object is
taken to have radius R, and constant mass density �, such
that � >�2M2. For simplicity, we further assume the
object lies in vacuum. Analogously to what is done in
[5], the radial field equation can be thought of as a fictional
particle rolling in a potential �Veff , subject to the ‘‘fric-
tion’’ term 2

r
d
dr �. The solution must be continuous at the

origin, and approach its symmetry-breaking value far away
from the object:

d

dr
�ð0Þ ¼ 0; �ðr ! 1Þ ¼ �0: (11)

We approximate the potential as quadratic around the
appropriate minima both inside and outside the object, and
then match at the surface of the object. Inside the object,
we therefore have Veff ¼ ð �

M2 ��2Þ�2=2, and the solution

satisfying the first of (11) is

�inðrÞ ¼ A
R

r
sinh

�
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

M2
��2

r �
; (12)
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with one undetermined constant A. Outside the object, we
approximate the potential as quadratic around the � ¼ �0

minimum: Veff ¼ �2ð���0Þ2. The solution satisfying
the second of (11) is

�outðrÞ ¼ B
R

r
e�

ffiffi
2

p
�r þ�0; (13)

with one undetermined constant B. Matching the field and
its first derivative across the boundary at r ¼ R determines
the two coefficients A and B.

The solutions involve three dimensionless parameters,
�R, �=�2M2 and �R2=M2. The first quantity measures the
radius of the object relative to the range of the symmetron-
mediated force in vacuum. Since the latter is & Mpc, as
seen earlier, for most objects of interest we have �R � 1.
From (9), we recognize the second quantity as the density
of the object as compared to the mean cosmic density. We
will always be interested in objects much denser than the
cosmic mean, �=�2M2 � 1.

Beyond that, we consider two cases depending on the
value of �R2=M2. Physically this ratio measures the sur-
face Newtonian potential � relative to M=MPl:

� � �R2

M2
¼ 6

M2
Pl

M2
�: (14)

The first case is that of a small object, � � 1. In this case
we obtain

A ¼ �0

1ffiffiffiffi
�

p
�
1� �

2

�
; B ¼ ��0

�

3
: (15)

The second case is that of a large object, � � 1:

A ¼ �0

2ffiffiffiffi
�

p e�
ffiffiffi
�

p
; B ¼ �0

�
�1þ 1ffiffiffiffi

�
p

�
: (16)

At distances R � r � ��1, the force on a test particle
due to a large object is suppressed compared to gravity:

F�

FN

��0

MPl

�R2
¼ 1

�
� 1; (17)

where we have used (10) and (14). This can be understood
as an analogue of the thin-shell effect of chameleon mod-
els. From (12) and (16), we see that � is exponentially

suppressed compared to �0 inside the object, e.g. �ðr ¼
0Þ ¼ �0e

� ffiffiffi
�

p
, except for a thin shell of thickness �R�

��1R, within which ���0=
ffiffiffiffi
�

p
. The symmetron is thus

weakly coupled to the core of the object, and its exterior
profile is dominated by the thin-shell contribution. In con-
trast, we see from (12) and (15) that � � �0 everywhere
within small objects. There is no thin shell in this case, and
as a result F�=FN �Oð1Þ.

III. Constraints from tests of gravity.—Since the force is
long range in all situations of interest, and because the
symmetron couples to matter universally, the tests to con-
sider are the same that constrain standard BD theories:
solar system and binary pulsar observations.

As we will see, to satisfy experimental constraints we
will want the Milky Way to be screened: �G � 1. To get
interesting cosmological effects, we focus on the limit
where this condition is barely satisfied: �G * 10. Since
�� 10�6 for the galaxy, it follows from (14) that

M & 10�3MPl; (18)

as mentioned earlier. Using (9), this implies that the
symmetron-mediated force has & Mpc range in vacuum.
In this parameter regime, the Sun (�� � 10�6) is screened,
but the Earth (�	 � 10�9) is not.
What matters for solar system tests is the local field

value, since this determines the coupling of the symmetron
to matter. At a generic point in the solar system, this is
determined by the symmetron profile interior to the galaxy.
Using (12) and (16) we find

�G

M
� M

MPl

RGffiffiffiffiffiffiffi
�G

p
Rus

exp

�
�RG � Rus

RG

ffiffiffiffiffiffiffi
�G

p �
; (19)

where RG � 100 kpc is the Milky Way radius, and Rus �
10 kpc is our distance from the galactic center. For �G ¼
20, and thus M � 10�3MPl, this gives �G=M � 10�5.
(i) Time-delay and light-deflection observations.—The

only nontrivial post-Newtonian parameter in this case is �,
defined in Jordan frame by ~g00 ¼ �ð1þ 2�JÞ and ~gij ¼
1� 2�J�, where �J is the Jordan-frame gravitational
potential. Starting in the Einstein frame, we have checked
that the backreaction of � on the metric is negligible, i.e.,
g00 � �ð1þ 2�EÞ and gij � 1� 2�E. Then, using (2) to

translate to Jordan frame, we therefore have

�� 1 � � �2

M2�
: (20)

At this order � can be calculated in either frame.
The signal for time-delay and light-deflection experi-

ments is due primarily to photons passing near the Sun’s
surface (d� R�). Hence we need the value �� in the
vicinity of the Sun. The Sun is screened; therefore (13) and
(16) apply, except with �0 replaced by �G to account
for the galactic background density. We therefore obtain
�� � �G=

ffiffiffiffiffiffiffi
��

p
. Substituting into (20), the current con-

straint of j�� 1j � 10�5 from the Casini spacecraft [14]

implies�G=M & 10�11=2�G. Our fiducial choice�G ¼ 20
(�G=M � 10�5) barely satisfies this bound; thus our pre-
dicted signal is just below current sensitivity levels.
(ii) Nordvedt effect.—This constrains the difference in

free-fall acceleration between the Moon and Earth towards
the Sun, arising from � corrections to their self-gravity. It
is easy to show that the change in the Earth’s gravitational
self-energy is j�Eg=Egj � ð�ðR	Þ ��GÞ2=M2�	. A

similar expression for the Moon yields a negligible con-
tribution. Since the Earth is unscreened, we can use (15) to
predict the Nordvedt parameter 	N

j	Nj � ð�ðR	Þ ��GÞ2
M2�	

¼ �2	
4�	

�
�G

M

�
2
: (21)
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Since �	 � 10�3�G and �	 ¼ 10�9, the current bound
j	Nj & 10�4 from Lunar Laser Ranging observations [9]

implies �G�G=M & 2
 10�7=2. This is barely satisfied
for our fiducial �G ¼ 20, and thus the symmetron signal is
within reach of next-generation experiment [15].

(iii) Perihelion shift of mercury.—Near Mercury, the
field profile due to the Sun is �ðrÞ � �Gð1� R�=rÞ.
Using this, we find j�� 1j � �Gð���GÞ=M2j��j.
The current limit j�� 1j & 10�3 [9] therefore implies

�G=M & 10�9=2, which is satisfied for our fiducial
�G=M � 10�5.

(iv) Binary pulsars.—Constraints from binary pulsars
are trivially satisfied in our scenario, since both the neutron
star and its companion are screened:

F� ¼ ��1
pulsar�

�1
companionFN: (22)

Estimating �pulsar � 0:1 and �companion � 10�6, we obtain

F�=FN ¼ 10�5=�2
G. The current constraint on BD theo-

ries translates to F�=FN � 1=2!BD & 5
 10�4 [9],

which in our case implies �2
G * 2
 10�2. This is auto-

matically satisfied by our earlier requirement �G * 10�2.
IV. Observational signatures.—As we have seen above,

our model predicts deviations from GR in the solar system
that are comparable to current constraints and therefore
within reach of future experiments. Moreover, unlike stan-
dard BD theories where all predictions are determined by a
single parameter, here different observables correspond to
different values of !eff

BD. Most strikingly, the predicted
signal for binary pulsars is far weaker than for solar system
tests.

The symmetron is also distinguishable from other
screening mechanisms. In standard chameleon theory, the
tightest constraint comes from laboratory tests of the in-
verse square law. This results in unobservably small
(!eff

BD * 1012) signals for solar system tests. In the
Vainshtein case, brane-world gravity theories [1,2] yield
modifications to the Moon’s orbit that are accessible to the
next-generation lunar ranging experiment [16,17], but the
light-deflection and time-delay signals are negligible.

The symmetron also results in apparent violations of the
equivalence principle between large (screened) and small
(unscreened) galaxies, which can show up in various as-
trophysical observations [13]. For the fiducial parameters
considered here, the threshold gravitational potential be-
low which objects are unscreened is �� 10�7. Typical
dwarf galaxies are therefore unscreened.

V. Quantum corrections.—The symmetron model is a
more natural-looking effective theory than
chameleon=fðRÞ models, which typically involve expo-
nential and inverse power potentials containing an infinite
number of nonrenormalizable operators. The symmetron
has theZ2 symmetry� ! ��, and its self-interactions are
the most general renormalizable terms consistent with this
symmetry. The quadratic coupling to the matter stress
tensor is the leading such coupling compatible with the
Z2 symmetry. It is nonrenormalizable, suppressed by the

mass scale M; thus we treat the symmetron as an effective
theory with cutoff ��M.
As usual with conformally coupled scalar fields, the

symmetron potential receives large quantum corrections
from matter loops. In particular, the symmetron mass gets
�m2

SM=M renormalization from standard model fields. Our

analysis relies on these contributions being fine-tuned
away, as in any scalar field model without shift symmetry.
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