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A geometrical invariant for regular asymptotically Euclidean data for the vacuum Einstein field

equations is constructed. This invariant vanishes if and only if the data correspond to a slice of the

Kerr black hole spacetime—thus, it provides a measure of the non-Kerr-like behavior of generic data. In

order to proceed with the construction of the geometric invariant, we introduce the notion of approximate

Killing spinors.
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Introduction.—It is widely expected that the late time
behavior of a dynamical black hole spacetime will ap-
proach, in some suitable sense, the Kerr spacetime.
Making sense of this expectation is one of the outstanding
challenges of modern general relativity. In particular, clar-
ifying what it means that a spacetime is close to the Kerr
spacetime is of great relevance for the problem of the
nonlinear stability of the Kerr spacetime and for the nu-
merical evolution of black holes. Because of the coordinate
freedom in general relativity it is, in general, difficult to
measure how much two spacetimes differ from each other.
Nevertheless, invariant characterizations of spacetimes
provide a way of bridging this difficulty.

Most analytical and numerical studies of the Einstein
field equations make use of a 3þ 1 decomposition of the
equations and the unknowns. Thus, it is important to have a
characterization of the Kerr solution which is amenable to
this type of splitting. Most known invariant characteriza-
tions of the Kerr spacetime have problems in this or other
respects. For example, the characterization of the Kerr
spacetime in terms of the so-called Mars-Simon tensor
requires the a priori existence of a Killing vector in the
spacetime [1,2]. An invariant characterization in terms of
concomitants of the Weyl tensor produces very involved
expressions when performing a 3þ 1 split [3,4]. Fur-
thermore, the above characterizations are local by con-
struction, and it is not clear how they could be used to
produce a global characterization of initial data sets. In this
Letter we discuss an alternative characterization of the
Kerr spacetime and show how it can be used to obtain a
global geometrical invariant of asymptotically Euclidean
slices of a spacetime. This geometric invariant has the key
property of vanishing if and only if the hypersurface is a
slice of the Kerr spacetime. In this sense, our invariant is
analogous to the invariant characterizing time symmetric
slices of static spacetimes discussed in [5].

Killing spinors and Petrov typeD spacetimes.—Let (M,
g��) be an orientable and time-orientable globally hyper-

bolic vacuum spacetime. A Killing spinor is a symmetric
spinor �AB ¼ �ðABÞ satisfying

rA0ðA�BCÞ ¼ 0; (1)

where rAA0 denotes the spinorial counterpart of the Levi-
Civita connection of the metric g��. Here A; B; � � � denote
abstract spinorial indices, while A;B; � � � will denote in-
dices with respect to a specific frame. The spinorial con-
ventions of [6] are used. Killing spinors offer a way of
relating properties of the curvature with properties of the
symmetries of the spacetime. Given a Killing spinor �AB,
one has that �AA0 ¼ rB

A0�AB is a complex Killing vector of

the spacetime.
We note a local characterization of the Kerr spacetime in

terms of Killing spinors based on the following results: (i) a
vacuum spacetime admits a Killing spinor �AB if and only
if it is of Petrov type D, N, or O [7,8] (a Petrov type D
spacetime for which �AA0 is real will be called a general-
ized Kerr-NUT spacetime [9,10]); (ii) Kerr is always of
typeD (there are no points where it degenerates to N orO)
and is the only asymptotically flat generalized Kerr-NUT
spacetime [1,2]. Let �ABCD denote the Weyl spinor. One
has the following:
Theorem 1.—Let (M, g��) be an asymptotically flat

spacetime for which �ABCD � 0 and �ABCD�
ABCD � 0.

Then (M, g��) is isometric to the Kerr spacetime if and

only if there exists a Killing spinor such that the associated
Killing vector is real.
Asymptotically Euclidean slices.—Let (S, hab, Kab) de-

note a smooth initial data set for the vacuum Einstein field
equations—that is, (hab,Kab) satisfy the vacuum constraint
equations on S. In what follows, the three-manifold S will
be assumed to be asymptotically Euclidean with two
asymptotic ends, i1, i2. An asymptotic end is an open set
diffeomorphic to the complement of an open ball in R3.
The falloff conditions of the various fields will be ex-
pressed in terms of weighted Sobolev spaces Hs

�, where

s is a non-negative integer and � is a real number. We
say that � 2 H1

� if � 2 Hs
� for all s. In what follows

we use the theory for these spaces developed in [11]
written in the conventions of [12]. Thus, the functions in
H1

� are smooth over S and have a falloff at infinity such
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that @l� ¼ oðr��jljÞ. We will often write � ¼ o1ðr�Þ for
� 2 H1

� at an asymptotic end.

We assume that on each end it is possible to introduce
asymptotically Cartesian coordinates xiðkÞ, k ¼ 1, 2, with

r ¼ ½ðx1ðkÞÞ2 þ ðx2ðkÞÞ2 þ ðx3ðkÞÞ2�1=2, such that the intrinsic

metric and extrinsic curvature of S satisfy

hij ¼ �ð1þ 2mðkÞr�1Þ�ij þ o1ðr�3=2Þ; (2)

Kij ¼ o1ðr�5=2Þ; (3)

where i, j are coordinate indices—in contrast to a, bwhich
are taken to be abstract ones. We assume thatmðkÞ � 0. For
simplicity we have excluded from our analysis boosted
slices—this will be discussed elsewhere. Note, however,
that the slices considered allow a nonvanishing ADM
angular momentum.

Killing spinor initial data.—A set of necessary and
sufficient conditions for the development (M, g��) of

the data S, hab, Kab to be endowed with a Killing spinor
was obtained in [8]. Let �AA0 be the spinor counterpart of

the normal to S, with normalization given by �AA0�AA
0 ¼ 2.

The spinor �AA0 allows us to introduce a space spinor
formalism—see, e.g., [8,13] for details. In particular, the
covariant derivative rAA0 can be split according to rAA0 ¼
1
2�AA0r � �QA0rAQ, where r � �AA

0rAA0 and rAB �
�ðA

A0rBÞA0 is the Sen connection. The Sen connection is

not intrinsic to the hypersurface S; however, it can be
expressed in terms of the spinorial Levi-Civita connection
of hAB, DAB, and of the spinorial counterpart of KAB,
KABCD ¼ KðABÞðCDÞ ¼ KCDAB. One has, for example, that

rAB	C ¼ DAB	C þ 1
2KABC

D	D. Given a spinor 	A, we

define its Hermitian conjugate via 	̂A � �A
E0
�	E0 . The

Hermitian conjugate can be extended to higher valence
symmetric spinors in the obvious way. The spinors �AB

and �ABCD are said to be real if �̂AB ¼ ��AB and �̂ABCD ¼
�ABCD. It can be verified that �AB�̂

AB, �ABCD�̂
ABCD � 0. If

the spinors are real, then there exist real tensors �a, �ab

such that �AB and �ABCD are their spinorial counterparts.

Notice that D̂AB ¼ �DAB. The Killing vector �AA0 ¼
rB

A0�AB can be decomposed in terms of its lapse � and

shift �AB according to �AA0 ¼ 1
2�AA0�� �QA0�AQ, where

� � �AA
0
�AA0 ¼ rAB�AB; (4)

�AB � �ðA
A0
�BÞA0 ¼ 3

2rP
ðA�BÞP: (5)

Some extensive computer algebra calculations carried out
in the suite XACT [14] show that the conditions found in [8]
for the existence of a Killing spinor in the development of
S, hAB, KAB are equivalent to

rðAB�CDÞ ¼ 0; (6)

�ðABC
F�DÞF ¼ 0 (7)

3�ðA
ErB

F�CDÞEF þ�ðABC
F�DÞF ¼ 0; (8)

where �AB is used as a shorthand for 3
2rP

ðA�BÞP. The re-

striction of �ABCD to the initial hypersurface S can be
expressed in terms of its electric and magnetic parts as
�ABCD ¼ EABCD þ iBABCD, where

EABCD ¼ 1
6�ABCDK � 1

2�ðAB
PQ�CDÞPQ � rðABCDÞ; (9)

BABCD ¼ iDQ
ðAKBCDÞQ; (10)

where �ABCD � KðABCDÞ and K � KAB
AB. The spinor

rABCD is the spinorial representation of the Ricci tensor
of hAB. All these quantities can be computed from the
initial data. From the analysis in [8] one has the following
result:
Theorem 2.—The development (M, g��) of an initial

data set for the vacuum Einstein field equations (S, hAB,
KAB) has a Killing spinor if and only if there exists a
symmetric spinor �AB on S satisfying Eqs. (6)–(8).
Equations (6)–(8) will be collectively referred to as the

Killing spinor initial data equations. Equation (6) will be
called the spatial Killing spinor equation whereas (7) and
(8) will be known as the algebraic conditions. A solution to
Eqs. (6)–(8) will be called a Killing spinor data, while a
solution to only Eq. (6) will be known as a Killing spinor
candidate.
As a consequence of Theorem 1, Eqs. (6)–(8) are known

to have a nontrivial solution if and only if the initial data set
(S, hab, Kab) is data for the Kerr or Schwarzschild space-
times. For Kerr initial data satisfying the asymptotic con-
ditions (2) and (3), one can always choose asymptotically
Cartesian coordinates (x1, x2, x3) and orthonormal frames
on the asymptotic ends such that

�AB ¼ �
ffiffiffi
2

p
3

xAB � 2
ffiffiffi
2

p
m

3r
xAB þ o1ðr�1=2Þ; (11)

with

xAB ¼ 1ffiffiffi
2

p �x1 þ ix2 x3

x3 x1 þ ix2

� �
: (12)

Using (11) one finds that � ¼ � ffiffiffi
2

p þ o1ðr�1=2Þ, �AB ¼
o1ðr�1=2Þ. In other words, the Killing spinor of the Kerr
spacetime gives rise to its stationary Killing vector.
Crucially, a direct computation shows that for any initial

data set satisfying (2) and (3), a spinor of the form (11)

satisfies rðAB�CDÞ ¼ o1ðr�3=2Þ.
Approximate killing spinors.—Equation (6) constitutes

an overdetermined condition for the 3 complex compo-
nents of the spinor �AB. One would like to replace it by an
equation which always has a solution. For this, one notes
that the operator defined by the left-hand side of Eq. (6)
sends valence-2 symmetric spinors to valence-4 totally
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symmetric spinors. We note the identity

Z
U
rAB�CD�̂ABCD d��

Z
U
�AB drCD�ABCD d�

þ
Z
U
2�AB�CDF

A �̂BCDF d� ¼
Z
@U

nAB�CD�̂ABCD dS;

(13)

with U � S, and where dS denotes the area element of
@U, nAB its outward pointing normal, and �ABCD is a
symmetric spinor. Using (13) one finds that the formal
adjoint of the spatial Killing spinor operator is given by
rAB�ABCD � 2�ABF

ðC�DÞABF. The composition of the two

operators is formally self-adjoint by construction and ren-
ders the equation

Lð�CDÞ � rABrðAB�CDÞ ��ABF
ðCrjABj�DÞF

��ABF
ðCrDÞF�AB ¼ 0: (14)

We shall call a solution, �AB, to Eq. (14) an approximate
Killing spinor. Clearly, any solution to the spatial Killing
equation (6) is also a solution to Eq. (14). Equation (14)
arises as the Euler-Lagrange equation of the functional

J ¼
Z
S
rðAB�CDÞ drAB�CD d�; (15)

where d� denotes the volume element of the metric hab.
A calculation reveals that the operator defined by the

left-hand side of this last equation is elliptic. Moreover, it
can be verified that under the asymptotic conditions (2) and
(3) the operator is asymptotically homogeneous [11,15]. It
follows that the operator is a linear bounded operator with
finite dimensional Kernel and closed range [11,16].

We want to consider solutions to Eq. (14) that behave
asymptotically like (11). A lengthy calculation which will
be presented elsewhere renders the following:

Lemma 3.—At any asymptotic end of an initial data

set satisfying (2) and (3) there exists a �AB such that � ¼
� ffiffiffi

2
p þ o1ðr�1=2Þ, �AB ¼ o1ðr�1=2Þ, �AB ¼ o1ðr3=2Þ, and

rðAB�CDÞ ¼ o1ðr�3=2Þ. In a specific asymptotic Cartesian

frame and coordinates �AB takes the form (11).
The solutions constructed in the previous lemma can be

smoothly cut off so they are zero outside the asymptotic

end, and then added to yield a real spinor �
	
AB on the entire

slice such that rðAB�
	
CDÞ 2 H1

�3=2 with asymptotic behav-

ior (11) at both ends. We write the following ansatz for the
solution to Eq. (14):

�AB ¼ �
	
AB þ 
AB; 
AB 2 H1

�1=2: (16)

One has the following result:
Theorem 4.—Given an asymptotically Euclidean initial

data set (S, hab, Kab) satisfying the asymptotic con-
ditions (2) and (3), there exists a smooth unique solution to
Eq. (14) with asymptotic behavior given by (16).

Remark.—Given the spinor �AB obtained from
Theorem 4, one has that by construction rðAB�CDÞ 2
H1

�3=2, which because of Bartnik’s conventions means

that rðAB�CDÞ 2 L2. Consequently, the functional J given

by (15) evaluated with the solution �AB given by
Theorem 4 is finite.
Proof of Theorem 4.—Substitution of ansatz (16) into

Eq. (14) renders the following equation for the spinor 
AB:

Lð
CDÞ ¼ �Lð�	CDÞ: (17)

First, it is noticed that due to elliptic regularity, any H2
�1=2

solution to the previous equation is in fact aH1
�1=2 solution,

so that if 
AB exists, then it must be smooth—see, e.g.,

[11]. By construction it follows thatrðAB�
	
CDÞ 2 H1

�3=2, so

that FCD � �Lð�	CDÞ 2 H1
�5=2.

We make use of the Fredholm alternative for weighted
Sobolev spaces to discuss the existence of solutions to
Eq. (17)—see, e.g., [15,16]. In the particular case of
Eq. (17) there exists a unique H2

�1=2 solution if

Z
S
FAB�̂

AB d� ¼ 0 (18)

for all �AB 2 H2
�1=2 satisfying L
ð�CDÞ ¼ Lð�CDÞ ¼ 0. It

will be shown in the sequel that such �AB must be trivial.
Using the identity (13) with �ABCD ¼ rðAB�CDÞ and as-

suming that Lð�CDÞ ¼ 0, one obtainsZ
S
rAB�CD drðAB�CDÞ d� ¼

Z
@S1

nAB�CD drðAB�CDÞ dS;

(19)

where @S1 denotes the sphere at infinity. As �AB 2 H2
�1=2

by assumption, it follows that rðAB�CDÞ 2 H1
�3=2 and fur-

thermore that nAB�CD drðAB�CDÞ ¼ oðr�2Þ. An integral over
a finite sphere will then be of type oð1Þ. Thus, the integral
over @S1 vanishes. Consequently,Z

S
rAB�CD drðAB�CDÞ d� ¼ 0: (20)

Therefore one concludes that rðAB�CDÞ ¼ 0. That is, �AB

has to be a Killing spinor candidate. Using the methods
devised in [17] to prove that there are no nontrivial Killing
vectors of a three-dimensional manifold that go to zero at
infinity, one can prove that if �AB 2 H1

�1=2 is a solution to

the spatial Killing spinor Eq. (6) then �AB � 0 on S. The
proof of this last result relies on the fact that

rABrCDrEF�GH ¼ HABCDEFGH; (21)

where HABCDEFGH is a homogeneous expression of �AB,
rAB�CD, andrABrCD�EF—this expression is obtained out
of a lengthy computer algebra calculation. Consequently,
the Kernel of Eq. (14) with decay in H2

�1=2 is trivial.

Accordingly, the Fredholm alternative imposes no restric-
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tion. Thus, there exists a unique solution to Eq. (14) with
asymptotic decay given by (16). This completes the proof
of Theorem 4.

The geometric invariant.—We use the functional (15)
and the algebraic conditions (7) and (8) to construct the
geometric invariant measuring the deviation of (S, hab,
Kab) from Kerr initial data. To this end, let �AB be a
solution to Eq. (14) as given by Theorem 4, and further-
more, let �AB � 3

2rP
ðA�BÞP. Define

I1 �
Z
S
�ðABC

F�DÞF�̂
ABCG�̂D

G d�; (22)

I2 �
Z
S
ð3�ðA

ErB
F�CDÞEF þ�ðABC

F�DÞFÞ

� ð3�̂AP drBQ�CD
PQ þ �̂ABCP�̂D

PÞd�: (23)

The geometric invariant is then defined by

I � J þ I1 þ I2: (24)

By construction I is coordinate independent. From the
form of the metric (2) we have �ABCD 2 H1

�3þ", " > 0.
By the multiplication lemma in [11] and �AB 2 H1

1þ" we
have�ðABC

F�DÞF 2 H1
�3=2. Thus, again one finds that I1 <

1. A similar argument shows I2 <1. Hence, the invariant
(24) is finite and well defined. Clearly I � 0. Note that the
invariants I1 and I2 are not connected to a variational
principle as in the case of J. This is an important difference
with the construction of [5].

Because of our smoothness assumptions, if I ¼ 0 it
follows that Eqs. (6)–(8) are satisfied on the whole of S.
Thus, the development of (S, hab, Kab) is, at least in a slab,
of Petrov type D, N, or O. The types N and O can be
excluded by requiring �ABCD � 0, �ABCD�

ABCD � 0
everywhere on S. Finally, if I ¼ 0 one has that the pair
(�, �AB) gives rise to a (possibly complex) spacetime
Killing vector �AA0 . As a consequence of our decay

assumptions, �� �̂ ¼ o1ðr�1=2Þ and �AB þ �̂AB ¼
o1ðr�1=2Þ, corresponding to the imaginary part of the
Killing data (�, �AB), give rise to a Killing vector that
goes to zero at infinity. However, there are no nontrivial
Killing vectors of this type [17,18]. Thus, �AA0 , is a real
Killing vector. Theorems 1 and 2 render our main result:

Theorem 5.—Let (S, hab, Kab) be an asymptotically
Euclidean initial data set for the Einstein vacuum field
equations satisfying (2) and (3) such that �ABCD � 0 and
�ABCD�

ABCD � 0 everywhere on S. Let I be the invariant
defined by Eqs. (15) and (22)–(24), where �AB is given as
the only solution to Eq. (14) with asymptotic behavior
given by (16). The invariant I vanishes if and only if (S,
hab, Kab) is an initial data set for the Kerr spacetime.

Applications and generalizations.—Given the invariant
of Theorem 5, a natural question to be asked is how it
behaves under time evolution. Addressing this question

requires an analysis of the spinor r�AB, which can be
seen to satisfy an elliptic equation similar to (14). In this
Letter we have restricted our attention to asymptotically
Euclidean slices; however, a similar analysis can be carried
out on hyperboloidal and asymptotically cylindrical slices.
If some type of constancy or monotonicity property could
be established, this would be a useful tool for studying
nonlinear stability of the Kerr spacetime and also in the
numerical evolutions of black hole spacetimes. For ex-
ample, it could be the case that the invariant I remains
constant along the leaves of a foliation of asymptotically
Euclidean slices, while monotonicity holds only if one
considers a foliation intersecting null infinity—as in the
case of the ADM and Bondi masses.
The decay and regularity assumptions used are certainly

not optimal. Full arguments and generalizations, will be
discussed elsewhere.
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