
One-Dimensional Kardar-Parisi-Zhang Equation: An Exact Solution and its Universality

Tomohiro Sasamoto*

Department of Mathematics and Informatics, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan

Herbert Spohn†

Zentrum Mathematik and Physik Department, TU München, D-85747 Garching, Germany
(Received 15 February 2010; revised manuscript received 10 May 2010; published 11 June 2010)

We report on the first exact solution of the Kardar-Parisi-Zhang (KPZ) equation in one dimension, with

an initial condition which physically corresponds to the motion of a macroscopically curved height profile.

The solution provides a determinantal formula for the probability distribution function of the height hðx; tÞ
for all t > 0. In particular, we show that for large t, on the scale t1=3, the statistics is given by the Tracy-

Widom distribution, known already from the Gaussian unitary ensemble of random matrix theory. Our

solution confirms that the KPZ equation describes the interface motion in the regime of weak driving

force. Within this regime the KPZ equation details how the long time asymptotics is approached.
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The motion of interfaces persists as a fascinating topic of
statistical mechanics. One particular, intensely studied
case is nonequilibrium growth processes, which are gov-
erned by local rules. In the seminal work [1], Kardar,
Parisi, and Zhang proposed a model equation, now called
the KPZ equation, to investigate the dynamic scaling of
such growing interfaces. KPZ argued that a growing inter-
face has a statistically self-similar structure with universal
scaling exponents for the interface width and for the trans-
verse correlation length. In particular, they predicted that a
one-dimensional interface has fluctuations which grow as

t1=3, in contrast to the t1=4 statistical broadening of an
equilibrium interface. Details of the KPZ scenario have
been investigated through Monte Carlo simulations of
simplified stochastic growth models, like Eden growth,
random deposition, and polynuclear growth. Universal
scaling exponents were confirmed, supporting that all
such growth models constitute the KPZ universality class.
On the theoretical side a variety of techniques have been
devised, useful also in other areas of nonequilibrium sta-
tistical mechanics, as dynamic and functional renormaliza-
tion group, mode-coupling theory, exact solutions, and
more. For the details of development up to 1995, see [2]
and the reviews [3,4]. However, so far the KPZ equation
itself has resisted analytical handling. We will report here
on the first exact solution. Physically it describes cluster
growth in a thin film. The solution also provides a better
understanding of the universality of the KPZ equation.

We will be concerned with the one-dimensional KPZ
equation only. The interface location is then described by a
height function hðx; tÞ depending on time t and location x
on the real line. The KPZ equation reads
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The first term is the slope dependent growth velocity of

strength �, � > 0 for convenience. The Laplacian smooth-
ens the interface with diffusivity � > 0. � is normalized
space-time white noise with correlator h�ðx; tÞ�ðx0; t0Þi ¼
�ðx� x0Þ�ðt� t0Þ and ffiffiffiffi

D
p

is the noise strength. � models
the random nucleations at the interface. We will choose
initial conditions such that the height profile remains
curved on the macroscopic scale.
In the breakthrough contribution [5] Johansson first

succeeded to compute a universal probability distribution
function (pdf); see also the related work [6,7]. He studied a
discrete growth model, known as single step, with wedge
initial profile. Most surprisingly, he discovered that the pdf
for the random amplitude of the height is the Tracy-Widom
distribution [8], first obtained in the context of the large N
statistics of the largest eigenvalue of a Gaussian unitary
ensemble (GUE) of random matrix theory [9]. The Tracy-
Widom pdf, �TWðsÞ, is defined through the determinant of
a symmetric operator acting on functions on the real line,
where, in principle, the determinant is defined by the
product of the eigenvalues. More explicitly, we denote by
Ps the projection operator onto the interval ½s;1Þ and by
KAi the Airy kernel

KAiðx; yÞ ¼
Z 1

0
dwAiðxþ wÞAiðyþ wÞ (2)

with Ai the standard Airy function. Then

�TWðsÞ ¼ d

ds
detð1� PsKAiPsÞ: (3)

One can show that tr½PsKAiPs�<1 [8] and hence the
infinite product makes sense.
In a spectacular recent experiment on electroconvection

[10] the Tracy-Widom statistics is verified down to a scale
of height samples with probability 10�4. In this experiment
a thin film of liquid crystal is electrically driven to a
turbulent phase, the unstable DSM1 phase. One then plants
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through a laser pulse a sharply localized seed of
topological-defect turbulence, the stable DSM2 phase. It
grows isotropically over a time window of 30 sec to the
maximal size of 1.6 cm in diameter. The experiment also
investigates how the Tracy-Widom distribution is ap-
proached for long times. One observes that the cumulants
2, 3, and 4 have already reached their Tracy-Widom value,

while the average still slowly decays as t�1=3 towards its
stationary value, an observation so far without theoretical
explanation.

Exact solution.—The curved height profile can locally
be approximated by a parabola. In idealization, we there-
fore choose our initial conditions such that the average
height is exactly parabolic, which can be achieved through
the initial sharp wedge

hðx; 0Þ ¼ �jxj=�; � � 1: (4)

Since for short times the nonlinear term dominates,
the solution hðx; tÞ spreads rapidly into the parabolic pro-
file, hðx; tÞ ’ �x2=2�t for jxj � �t=� and hðx; tÞ ’
ð�=2�2Þt� jxj=� for jxj � �t=� Because of the noise
term in (1) this profile has superimposed random fluctua-

tions whose amplitude grows as t1=3. A typical realization
is shown in Fig. 1(a).

We consider the height statistics at one prescribed point
x. Then, for every t > 0,

ð�=2�Þhðx; tÞ ¼ �x2=4�t� 1
12�

3
t þ 2 log�þ �t�t; (5)

where

�t ¼ ð�4�tÞ1=3; � ¼ ð2�Þ�3=2�D1=2: (6)

The first three terms of (5) are deterministic, in particular,
one notes the inverted parabola already mentioned. The
logarithmic term reflects the scale invariance of the initial
sharp wedge. All information on the fluctuations of hðx; tÞ
is encoded in the random amplitude �t, which extends the
Tracy-Widom amplitude, �TW, to finite time t. The pre-

factor �t confirms that the fluctuations grow as t1=3. The
pdf of �t is given by

�tðsÞ ¼
Z 1

�1
du�te

�tðs�uÞ exp½�e�tðs�uÞ�
� ð det½1� PuðBt � PAiÞPu� � detð1� PuBtPuÞÞ:

(7)

Here PAi has the integral kernel AiðxÞAiðyÞ, which can be
viewed as a one-dimensional unnormalized projection, and
Bt has the kernel

Btðx; yÞ ¼
Z 1

�1
dwð1� e��twÞ�1Aiðxþ wÞAiðyþ wÞ:

(8)

�t is independent of x and depends on t only through the
dimensionless parameter �t. In the limit t ! 1 the
Gumbel density in (7) tends to �ðs� uÞ and Bt tends to
B1 ¼ KAi. The difference of determinants in (7) is then
precisely �TWðsÞ. Hence �t tends to �TW as t ! 1. In case
of a macroscopically curved profile, it is expected that for
any growth process in the KPZ class the pdf of the height
fluctuations is Tracy-Widom in the long time limit. We
have thus established that the KPZ equation is in the KPZ
universality class as regards to the pdf of the height
fluctuations.
Our exact solution also provides an explanation for the

observed t�1=3 relaxation to stationarity. The difference of

determinants in (7) is of order t�4=3 [11]. Hence the leading
correction to �TWðsÞ is the shift due to the nonzero mean of

the Gumbel distribution which is of order t�1=3.
To represent the solution to (1) in a more tractable form

we introduce the Cole-Hopf transformation as

Zðx; tÞ ¼ exp½ð�=2�Þhðx; tÞ�: (9)

At the expense of multiplicative noise, Zðx; tÞ then satisfies
the linear equation
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=2�Þ�Z: (10)

with the normalized initial condition Zðx; 0Þ ¼
lim�!0ðð2�=�Þ2�Þ�1 exp½�ð�=2�Þjxj=�� ¼ �ðxÞ. (10) is
solved through the Feynman path integral

Zðx; tÞ ¼ E0

�
exp

�
�
Z 2�t

0
ds�ðbðsÞ; sÞ

�
�ðbð2�tÞ � xÞ

�
:

(11)

Here E0ð�Þ is the Wiener integral over all paths of an
auxiliary Brownian motion bðtÞ, starting at 0 and with
variance t. In principle, the solution of the KPZ equation
with sharp wedge initial condition is defined by

hðx; tÞ ¼ ð2�=�Þ logZðx; tÞ: (12)

However, as written hZðx; tÞi ¼ 1 because of ultraviolet
divergencies. As in quantum field theory one thus has to
introduce a suitable cutoff to be removed through a renor-
malization scheme. We briefly describe four distinct vari-
ants, all providing physical insight to the interpretation of
the KPZ equation. But only the last variant carries the
computational power to obtain the exact solution.
(i) Colored noise.—The expression (11) is only formal,

since the white noise � is very rough and hence the action
in (11) relies on an undefined integral. One way to improve

(a)

 t/
x

h(x,t)

(b)

i

j
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(N,N)

FIG. 1 (color online). (a) A typical realization of the droplet
height function. (b) A directed polymer configuration.
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the situation is to substitute in the KPZ Eq. (1) the noise
�ðx; tÞ by a noise �	ðx; tÞ, which is colored in x with width
	�1 but still white in t, such that �	 ! � as 	 ! 1. This
modification induces the uniform translation of the height
profile by v	t with v	 ’ 	. Going to the moving frame of
reference, the limit 	 ! 1 of the height profile is well
defined [12,13] and yields the proper interpretation of (11).

(ii) Directed polymer in a random potential.—The inte-
gral in (11) is discretized. Then the Brownian motion path
bðtÞ is replaced by a directed polymer !, which for con-
venience is placed on the two-dimensional lattice Z2. It
starts at 0, makes only up or right moves, and ends at the
lattice site (tN, tN), see Fig. 1(b). Independently for each
site ði; jÞ 2 Z2, there is a unit Gaussian random potential
�ði; jÞ. The energy of the directed polymer is Eð!Þ ¼P

�ði; jÞ, where the sum is over the potentials along the
polymer !. The discrete approximation to (11) reads then

ZtN ¼ X
!:ð0;0ÞVðtN;tNÞ

exp½�
Eð!Þ�: (13)

The partition function is point-to-point, since both end-
points of the polymer are fixed. In the limitN ! 1,
 ! 0
with 
4N fixed, ZtN ! Zð0; tÞ and Zð0; tÞ as defined in
(i) [14]. From this perspective the KPZ equation is the
weak noise limit of the directed polymer, see [15] for
details.

(iii) Attractive �-Bose gas [16].—The nth moment,
hZðx; tÞni, of the partition function (11) can be expressed
through the propagator of n quantum particles on the line
interacting through an attractive �-potential. All n particles
start at 0 and propagate to x at time t. Working out hZni
yields the potential �1

2�
2
P

n
i;j¼1 �ðxi � xjÞ. Thus the re-

normalization corresponds to merely removing the self-
energy through normal ordering. Thereby one arrives at the
same random partition function as constructed in (i) and
(ii).

(iv) Single step growth model.—This is a stochastic
evolution model for the integer valued height function
hðj; tÞ, j 2 Z, satisfying the single step constraint

jhðjþ 1; tÞ � hðj; tÞj ¼ 1: (14)

In our case the initial height profile is the wedge hðj; 0Þ ¼
�jjj. A random sequential update rule is used:
Independently the height at a local minimum is increased
by 2 with rate p and at a local maximum decreased by 2
with rate q, pþ q ¼ 1 to set the time scale, and q > p in
our case corresponding to � > 0. The height differences
are then governed by the partially asymmetric simple
exclusion process (PASEP). This is a stochastic particle
system on Z, where there is at most one particle per site.
Particles jump with rate p to the right and rate q to the left
under the constraint of the exclusion rule. The initial
wedge corresponds to the 0–1 step initial particle configu-
ration, for which all sites to left of the origin are empty and
to the right of the origin are filled. In [5] the Tracy-Widom

fluctuations are proved in case p ¼ 0, q ¼ 1 (the TASEP),
including a discrete time parallel random update rule. The
intricate extension to 0< p< q< 1 has been accom-
plished by Tracy and Widom [17,18]. Also available is
the corresponding result for the PNG droplet [6,19,20].
The Cole-Hopf solution (11) arises at the crossover scale

to weak asymmetry (WASEP). More specifically, one as-
sumes q ¼ 1

2 þ
ffiffiffi
"

p

, 
> 0, " > 0, and " � 1. The cor-

respondingly adjusted time scale is order "�2 and space

scale is order "�1, while the height is of order "�1=2. If
h"ðj; tÞ denotes the WASEP random height profile, then the
single step partition function is defined through

Z"
stepðj; tÞ ¼ exp½ð logðp=qÞÞh"ðj; tÞ�: (15)

As shown in [12,13], the correctly centered
Z"
stepð"�1x; "�2tÞ converges in the limit " ! 0 to Zðx; tÞ,

constructed already before in (i)–(iii).
We are now in a position to indicate, rather roughly, how

our exact solution is obtained. A more detailed exposition
can be found in [11,21]. For the 0–1 step initial particle
configuration, Tracy and Widom [17] recently provided a
contour integration formula for the probability distribution
of the position of the mth particle at time t valid for
arbitrary q. In [21] we use their formula as starting point
and study the scaling limit of the PASEP as above, namely,
asymmetry

ffiffiffi
"

p

, spaceOð"�1Þ, and timeOð"�2Þ, to arrive

at a pdf given as an integral over the difference of two
determinants as in (7), including a deterministic shift of
order "�1 and a subleading log" correction. As discussed
in the companion paper [11], in addition one has to analyze
the average hZ"

stepðj; tÞi for the WASEP, thereby to deter-

mine the appropriate centering. One finds terms of order
"�1 and log", which are precisely cancelled by the corre-
sponding terms appearing in the WASEP scaling limit.
Combining both results, one arrives at (5)–(8) The KPZ
parameters are fixed through the WASEP as 2� ¼ 1 and

 ¼ �. At x ¼ 0 the WASEP average density is 1=2 and
hence the noise strength D ¼ 1=4. By varying x one can
tune the noise strength to �ð1� �Þ, where � is the local
average density. In principle it suffices to consider x ¼ 0
and to deduce the parameter dependence from (11).
For a more detailed information on the pdf �tðsÞ one has

to rely on a numerical evaluation of (7), for which purpose
it is convenient to regard, e.g., PuBtPu as a large matrix.
One then evaluates Btðx; yÞ at a judiciously chosen set of
grid points xj, j ¼ 1; . . . ; n, u � xj, with n of order 60 to

120 and thereby defines the n� n matrix Bij ¼ Btðxi; xjÞ,
i, j ¼ 1; . . . ; n, for which detð1� BÞ is obtained by a
standard routine. Since the kernel of (8) is a smooth
function, the computation is fast and the errors are small
[22]. In Fig. 2(a) we display the pdf �tðsÞ for �t ¼ 2, 5, 10
obtained by the method described. For even smaller values
of �t the computation becomes slow because of strong
oscillations of the kernel Btðx; yÞ resulting from the singu-
larity at w ¼ 0 of the defining integral (8).
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Universal properties.—The exact solution has been ob-
tained through a limit of vanishing asymmetry. More gen-
erally, one could consider some growth model in the KPZ
class with a tunable asymmetry, denoted by 
. Physically
the asymmetry is possibly small, but fixed. Time is mea-
sured in Monte Carlo time steps. For times of order
�2 the
nonlinearity plays no role, yet, and the height fluctuations
are approximately Gaussian. On the time scale 
�4, one
crosses over to the KPZ solution (5) with non-Gaussian
statistics, which asymptotically is well approximated by
the Tracy-Widom distribution. Of course, a clean separa-
tion of time scales is expected only for 
 � 1.

To have a test case we performedMC simulations for the
PASEP with strongest possible asymmetry, namely q ¼ 1,
p ¼ 0 (the TASEP). For the 0–1 step initial condition we
sampled the height at the origin, hq¼1ð0; tÞ. The scale linear
in t is given by �ðq� pÞt=2. For t ¼ 103 MC steps the
distribution of hq¼1ð0; tÞ is concentrated approximately in

an interval of 60 lattice units. As displayed in Fig. 2(b),
even on the discrete level the Tracy-Widom distribution is
still an accurate approximation, which becomes almost
indistinguishable upon shifting it by 0.13 units to the right.

The t�1=3 shift to the right was noted before numerically
from the recursion relations of the PNG droplet [23] and is
also observed in the experiment [10]. According to the
exact solution, for large t, �t is shifted by ��1

t ð�0:577þ
2 log�Þ relative to �TW, where �0:577 is the mean of the
Gumbel density. Since � is proportional to �, this suggests

that the prefactor of the t�1=3 shift for the PASEP should
undergo a sign change. Indeed, running the MC simulation
for smaller values of q, one finds that �t is shifted to the left

side of �TW for q & 0:78. The approach as t�1=3 seems to
be universal and is expected to hold for any growth model
in the KPZ class. However the precise first order correction
to �TWðsÞ will depend on the particular model.

Conclusions.—We have computed the exact probability
distribution function for the height hðx; tÞ of the KPZ
equation with narrow wedge initial profile. The long time
limit is the Tracy-Widom pdf, in accordance with the
results for discrete growth models. But in addition, based

on our exact solution, we now better understand how the
long time asymptotic is approached. For growth models
with tunable asymmetry the KPZ equation is an accurate
approximation for weak asymmetry.
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FIG. 2 (color online). (a) The pdf defined by (7) for �t ¼
2ð�Þ, 5ðþÞ, 10ð�Þ and the Tracy-Widom pdf defined by (3)
(full curve). (b) The TASEP height statistics at 103 MC steps
and the Tracy-Widom pdf.
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