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Given one or more uses of a classical channel, only a certain number of messages can be transmitted

with zero probability of error. The study of this number and its asymptotic behavior constitutes the field of

classical zero-error information theory. We show that, given a single use of certain classical channels,

entangled states of a system shared by the sender and receiver can be used to increase the number of

(classical) messages which can be sent without error. In particular, we show how to construct such a

channel based on any proof of the Kochen-Specker theorem. We investigate the connection to pseudo-

telepathy games. The use of generalized nonsignaling correlations to assist in this task is also considered.

In this case, an elegant theory results and, remarkably, it is sometimes possible to transmit information

with zero error using a channel with no unassisted zero-error capacity.
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It is well known that if two parties share an entangled
quantum state, they may be able to achieve tasks which
would be otherwise impossible. For instance, without com-
municating they can violate Bell inequalities [1], and with
classical communication they can teleport the state of a
quantum system [2]. Here we show that quantum effects
can sometimes give an advantage in the context of zero-
error coding [3,4]: A classical channel N connects a
sender (Alice) to a receiver (Bob). It has a finite number
of inputs and outputs and its behavior is fully described by
the conditional probability distribution over outputs given
the input; i.e., it is discrete and memoryless. Given one use
of N , the maximum number of different messages Alice
can send to Bob if there is to be no chance of an error is
known as the one-shot zero-error capacity of N .

The main contribution of this Letter is to show that, for
certain classical channels, entanglement between Alice
and Bob can be used to increase the one-shot zero-error
capacity for classical messages. This is in contrast to
interesting recent work considering zero-error coding for
classical and quantum data over quantum channels [5–8].
Recall that the use of entanglement [9] (and even non-
signaling correlations [10]) cannot increase the transmis-
sion rate if we only demand that the error rate goes to zero
in the large block length limit: it remains equal to the
normal Shannon capacity [11].

We briefly review classical zero-error coding, then we
show how to construct classical channels where entangle-
ment can increase the one-shot zero-error capacity. We
then discuss the relationship of entanglement-assisted
zero-error coding to ‘‘pseudotelepathy’’ games. After
that, we upper bound this entanglement assistance by con-
sidering generalized nonsignaling correlations, giving a
simple formula for the nonsignaling assisted zero-error
capacity of any channel. This turns out to have an interest-

ing relationship to classical results of Shannon from his
original paper [3] on zero-error capacities.
Two input symbols of a channel are confusable if the

corresponding distributions on output symbols overlap.
Shannon introduced the confusability graph GðN Þ of a
classical channel N : Its vertices are the set of input
symbols and they are joined if and only if they are con-
fusable. Classically, a zero-error code is a set of noncon-
fusable inputs. The one-shot zero-error capacity c0ðN Þ of
a channel N is simply the maximum size of such a set. In
the language of graph theory, a maximum nonconfusable
set of inputs is a maximum independent set of the confus-
ability graph, and when Bob receives a channel output, the
possible inputs are a clique in the confusability graph. A
channel has no unassisted zero-error capacity if and only if
its confusability graph is complete, i.e., all vertices are
connected.
It is also useful to define the hypergraph of a channel: A

hypergraph is just a set S (the vertices) and a set of subsets
of S called the hyperedges. The hypergraph of a channel
N has the set of inputs as vertices and one hyperedge for
each of the outputs, which contains all the inputs that have
a nonzero probability of causing that output; we denote it
HðN Þ.
In this work we deal with correlations (bipartite condi-

tional probability distributions) in the classes SR, SE, and
NS: Correlations belong to SR if and only if they can be
obtained using (classical) shared randomness (and local
operations), to SE (shared entanglement) if and only if they
can be realized by local operations on a shared quantum
state, and to NS if and only if the correlation is nonsignal-
ing (meaning that the marginal distribution on the output of
each party is independent of the other party’s input). Each
class in this list strictly contains the previous one. We
denote the maximum number of messages which can be
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sent without error by a single use of N when any corre-
lation in class � can be used by c�ðN Þ. The correspond-
ing limiting rate to send zero-error bits is
C�ðN Þ :¼ limn!1 1

n logc�ðN �nÞ. A simple convexity

argument shows that shared randomness between sender
and receiver cannot help, so cSRðN Þ ¼ c0ðN Þ for all
channels. In contrast, we will next show how to construct
channels N for which the number of messages which can
be sent perfectly using entanglement, cSEðN Þ, is greater
than c0ðN Þ.

Entanglement-assisted zero-error communication.—
Given a classical channel N from Alice and Bob, with
inputs X and outputs Y, how might they make use of
entanglement to increase the number of messages which
can be sent? Suppose that Alice wants to send one of q
messages to Bob without error and that their entangled
shared system is in state �AB. She will perform some
operations on her side of the entangled system, and con-
ditioned on the outcomes of any classical measurements
that she does, and on the messagem that she wants to send,

choose some input toN . All of this can be represented by
saying that she chooses one of q generalized measurements
according to m, each with jXj outcomes, to perform on her
side of the state, and then uses the outcome k as input to
N . Since the residual state on Alice’s side is irrelevant to
Bob’s ability to decode the message, the encoding is fully
specified by the positive operator valued measures

fEðmÞ
1 ; . . . ; EðmÞ

k g for m 2 ½q� :¼ f1; . . . ; qg corresponding

to the q different generalized measurements.

If Alice sends message m, then with probability pðmÞ
k ,

Alice inputs k and the residual state of Bob’s system is

�ðmÞ
k ¼ ðTrAEðmÞ

k � 1�Þ=pðmÞ
k . Letting �ðmÞ

k
:¼ pðmÞ

k �ðmÞ
k , for

all messages m:
P

k�
ðmÞ
k ¼ TrA�AB ¼: �B, reflecting the

fact that without information from the classical channel,
Bob has no idea which message Alice sent (i.e., causality).

Conversely, any set of positive operators �ðmÞ
k which satis-

fies this condition for some �B can be realized by a suitable
choice of �AB and generalized measurements. Now, includ-
ing the state of the channel output (we label the system C)
as well as his half of the entangled system, Bob’s state

after receiving the channel output y 2 Y is �m :¼
P

x2X;y2YN ðyjxÞjyihyjC��ðmÞ
x . The encoding works

if and only if Bob can distinguish perfectly between all
the �m, i.e., for all m, m0 2 ½q�: 0 ¼ Tr�m�m0 ¼P

x;x02X confusable½
P

yN ðyjxÞN ðyjx0Þ� Tr�ðmÞ
x �ðm0Þ

x0 . We

therefore have the following.
Theorem 1. For any channel N with inputs X and

outputs Y, cSEðN Þ ¼ qðGðN ÞÞ, where qðGðN ÞÞ is the
maximum integer q such that there exists a density matrix

�B and positive semidefinite operators �ðmÞ
x for all m 2

½q�, x 2 X, on some Hilbert space such that for all m,P
x2X�

ðmÞ
x ¼ �B, and

8 m � m0 8 confusable x; x0 Tr�ðmÞ
x �ðm0Þ

x0 ¼ 0:

In particular, cSEðN Þ depends only on GðN Þ. j
In light of this fact, it is clear that if a channel has no

unassisted zero-error capacity, entanglement cannot
change this. Otherwise, entanglement would allow perfect
communication over the completely noisy channel, in vio-
lation of causality!
However, there are some channels for which cSE > c0 >

0. Examples of such channels can be constructed from
proofs of the Kochen-Specker (KS) theorem [12]: We
call a family fBmgqm¼1 of complete orthogonal bases Bm

of Cd a KS basis set if it is impossible to select one vector
from each basis such that no two are orthogonal. That such
sets exist is a corollary of the KS theorem [12].
Theorem 2. For any KS basis set Z ¼ fBmgqm¼1 in Cd

consisting of q orthogonal bases, one can construct a
classical channel N with c0ðN Þ< q and cSEðN Þ � q.
Proof. Let us write Bm ¼ fc m1; . . . ; c mdg. We can con-

struct a channel N Z with inputs in ½q� � ½d� such that a
pair of inputs (m; j), (m0; j0) are confusable if and only if

FIG. 1. A KS basis set of six bases for C4 is tabulated at the
bottom of the figure, one basis per row. The vectors are presented
as 4-tuples labeled by a number. The diagram represents a
channel N with an input symbol for each vector in the set. It
has an output symbol for each gray loop: on input x the output is
drawn uniformly at random from those corresponding to the
three loops which contain that x. Inputs are confusable if and
only if corresponding vectors are orthogonal, so by Theorem 2,
c0ðN Þ< 6 (in fact it is 5), but cSEðN Þ � 6. It is interesting to
note that to send one of six symbols (with equal prior proba-
bilities) by a single use of N , the best unassisted code has error
probability 1=18.
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the corresponding vectors c mj and c m0j0 are orthogonal.

(In general there are many ways to do this, and any one will
do. For instance, one can add an output symbol for each
orthogonal pair which can be activated by both inputs in
that pair but no others.) GðN Þ has an edge between inputs
if and only if the corresponding vectors are orthogonal. As
such, the vertices of G can be partitioned into q cliques of
size d, corresponding to the q bases of Z, so the indepen-
dence number of G is certainly no larger than q. If there
was an independent set of size q inG it would have to have
exactly one vertex in each of the q cliques, but this would
select one vector in each of the q bases such that no two are
orthogonal, contradicting the assumption on Z. Therefore,
c0ðN Þ< q.

To send q messages using entanglement, Alice and Bob
can use a maximally entangled state of rank d: to send m,
Alice measures her side of the state in the bases Bm and
obtains the outcome j (at random). She inputs (m; j) to the
channel. Bob’s output tells him that Alice’s input was in
some particular mutually confusable subset, but by con-
struction, these inputs correspond to mutually orthogonal
residual states of his subsystem, so he can perform a
projective measurement to determine precisely which in-
put Alice made to the classical channel, and hencewhich of
the q messages she chose to send, with certainty. j

In Fig. 1 we give an example of a KS basis set derived
from a proof of the KS theorem due to Peres [13].

Relationship to pseudotelepathy games.—This increase
of the one-shot zero-error capacity is an example of per-
forming a classical task without error using entanglement,
which becomes impossible without the entanglement. This
phenomenon might sound familiar to those who have
encountered pseudotelepathy games (hereafter PT games)
[14]. The difference is that in these games Alice and Bob
are not allowed to communicate with each other at all, but
instead communicate with a verifier who sends them ques-
tions and then decides whether or not they win the game
based on their replies.

To be precise, in this context a ‘‘game’’ g consists of
questions a and b (drawn according to a fixed distribution
pða; bÞ) to Alice and Bob, respectively, who reply with
answers � and �. These are accepted with probability
Aða; b; �; �Þ, A also being a fixed distribution. The proba-
bility of acceptance (‘‘winning’’) is given by

g ðsÞ :¼ X

a;b;�;�

Aða; b; �; �Þpða; bÞsð�;�ja; bÞ;

where the strategy sðrjqÞ is a correlation describing the
responses r of the provers to questions q. Note that gðsÞ is a
linear function of s. We call the strategy s ‘‘perfect’’ (for
the game g) if and only if gðsÞ ¼ 1. Typically we are
interested in the best winning probability which can be
achieved if the strategy is restricted to some class of
correlations like NS or SE. A PT game is a game g which

can be won with certainty by a strategy in SE but cannot be
won with certainty by any strategy in SR.
Proposition 3. For any channel N with inputs X and

outputs Y, and integer n, there exists a natural game g such
that g has a perfect strategy in the class of correlations� if
and only if c� � n.
Proof. In the game g, the verifier sends Alice m 2 ½n�

and Bob y 2 Y drawn independently and uniformly at
random. Alice sends back an answer x 2 X and Bob
replies with m̂ 2 ½n�. If N ðyjxÞ> 0, they win the game
if and only if m ¼ m̂. Otherwise, they always win the
game. A strategy s is perfect for this game if and only ifP

x;yN ðyjxÞsðx; m̂jm; yÞ ¼ �mm̂. Therefore, there is a per-

fect strategy for g in � if and only if c�ðN Þ � m. j
This means that, in order to give an advantage for zero-

error coding over SR, a correlation in SE must also be able
to win a particular PT gamewith certainty (and hence sit on
the boundary of the nonsignaling polytope).
Nonsignaling assisted zero-error capacity and exact

simulation.—While all correlations which can be realized
by measurements on entangled states are nonsignaling, the
converse is not true, as in the case of the Popescu-Rohrlich
box [15]. Consequently, we can study nonsignaling as-
sisted protocols to find upper bounds for entanglement
assistance, but this study also leads to a beautifully simple
theory of nonsignaling assisted zero-error communication.
Recalling the definition of a hypergraph, the fractional-

packing number ��ðHÞ of a hypergraph H [16] on vertices
X is the maximum value of

P
x2XvðxÞ where v:X ! ½0; 1�

weights the vertices subject to the constraint that for all
hyperedges S of H,

P
x2SvðxÞ � 1.

Theorem 4. For a classical channel N with hyper-
graph HðN Þ,

cNSðN Þ ¼ b��ðHðN ÞÞc;

where ��ðHðN ÞÞ is the fractional-packing number of
HðN Þ.
Furthermore, since the function �� is multiplicative, in

the sense that ��ðHðN 1 �N 2ÞÞ ¼ ��ðHðN 1ÞÞ�
��ðHðN 2ÞÞ, the NS-assisted zero-error capacity of N is

CNSðN Þ ¼ log��ðHðN ÞÞ;

which is additive: CNSðN 1 �N 2Þ ¼ CNSðN 1Þ þ
CNSðN 2Þ.
To get the best upper bounds on entanglement-assisted

zero-error communication using this result, we should
minimize over all hypergraphs with the same confusability
graph G as the channel in question, because cSE depends
only on G (see Theorem 1).
The proof of Theorem 4 is given in [10]. With one

interesting proviso: the nonsignaling assisted zero-error
capacity CNSðN Þ is the same as the feedback-assisted
zero-error capacity of the channel C0FðN Þ, as derived by
Shannon in his seminal paper [3]. The proviso applies only
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when the unassisted zero-error capacity is zero: Then CNS

can be positive, whereas C0F is always zero.
Channel simulation and reversibility.—One can also

consider the ‘‘reverse’’ problem to zero-error coding
[10], and ask what is the minimum identity channel
needed, given correlations in �, to simulate one (or
more) uses of some noisy channelN exactly (in the sense
of exactly reproducing the conditional probability distri-
bution of outputs given inputs). We denote this minimum
required number of messages by k�ðN Þ, and the
�-assisted simulation cost of N by K�ðN Þ :¼
limn!1 1

n logkNSðN �nÞ. Again, the structure of the set of

all nonsignaling correlations results in a very simple for-
mula for kNSðN Þ: For any channel N with inputs X and
outputs Y, kNSðN Þ ¼ dPymaxx N ðyjxÞe, and since the

sum here is multiplicative under tensor products of the
channel matrix, KNSðN Þ ¼ log½Py maxx N ðyjxÞ�.

While we have found examples showing an arbitrarily
large gap between kNSðN Þ and kSRðN Þ, the gap disap-
pears in the limit of many channel uses: KSRðN Þ ¼
KSEðN Þ ¼ KNSðN Þ [10].

Curiously, a kind of combinatorial zero-error reversibil-
ity exists when nonsignaling correlations are freely avail-
able: For a given channel hypergraph H, the NS-assisted
zero-error capacity of channels with hypergraphH is equal
to the infimum of the NS-assisted simulation cost for
channels with hypergraph H [10], in analogy to the direct
and reverse Shannon theorems [9,11].

Conclusion.—We have shown that entanglement can
sometimes be used to increase the number of classical
messages which can be sent perfectly over classical chan-
nels. To upper bound this quantum advantage, we have
given a simple formula for the nonsignaling assisted ca-
pacity as a linear program. These discoveries present many
new questions: First, can entanglement improve the
asymptotic zero-error capacity, compared to no assistance,
as we have seen NS correlations can? More generally, can
we find a simple expression for the entanglement-assisted
zero-error capacity in the one-shot or asymptotic case?
Note that while the best general upper bound known on
C0 is given by Lovász’s famous # function [17], it was
very recently found (indeed prompted by our Theorem 2)
that # is still an upper bound on CSE [18,19]. Can we find
simpler, less contrived, examples of channels where cSE >
c0? In another direction, the relationship between KS
theorems and PT games has been studied in [20]. We found
connections between the entanglement-assisted zero-error
phenomenon and both of these topics, but left open the
development of a fuller understanding of the relationships
among the three.
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