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Astro-Particule et Cosmologie, Université Paris 7-Denis Diderot, 10 rue A. Domont et L. Duquet, 75205 Paris cedex 13, France
(Received 13 October 2009; published 9 June 2010)

We study the real-time evolution of a self-interacting OðNÞ scalar field initially prepared in a pure,

coherent quantum state. We present a complete solution of the nonequilibrium quantum dynamics from a

1=N expansion of the two-particle-irreducible effective action at next-to-leading order, which includes

scattering and memory effects. We demonstrate that, restricting one’s attention (or ability to measure) to a

subset of the infinite hierarchy of correlation functions, one observes an effective loss of purity or

coherence and, on longer time scales, thermalization. We point out that the physics of decoherence is well

described by classical statistical field theory.
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Quantum decoherence is a fundamental process whose
understanding is a central issue in many areas of physics.
Topical examples include measurement theory in quantum
mechanics [1], the physics of Bose-Einstein condensates
[2], or of quantum computers [3], neutrino physics [4],
high-energy nuclear collisions [5], black hole physics [6],
or the description of primordial fluctuations in inflationary
cosmology [7,8]. It is a genuine nonequilibrium process,
which requires the real-time description of quantum dy-
namics. Analytic descriptions can be obtained for exactly
solvable models and/or simple enough approximations,
e.g., assuming a linear coupling between the system and
its environment, neglecting backreaction, etc. A complete
microscopic description in realistic quantum field theories
(QFT) is a notoriously difficult task [9], which requires
first-principles calculations of the nonequilibrium quantum
dynamics.

Recent years have witnessed substantial progress con-
cerning the description of quantum fields out of equilib-
rium [10]. Two-particle-irreducible (2PI) functional
techniques provide a powerful tool to devise systematic,
practicable approximation schemes, valid for arbitrarily
far-from-equilibrium situations [9,10]. It has been demon-
strated that a coupling or 1=N expansion of the 2PI effec-
tive action at lowest nontrivial order can describe far-from-
equilibrium dynamics and subsequent (quantum) thermal-
ization without further assumption [11–13]. In this Letter,
we use 2PI techniques to compute the dynamics of deco-
herence from first principles in QFT [14].

There are various uses of the concept of (de)coherence
[16], the most widely discussed being the so-called
environment-induced decoherence, which results from
the interaction of the system under study with a (thermal)
bath of unobserved degrees of freedom (d.o.f.) [1]. Even in
the absence of an environment, decoherence of a subset of
d.o.f. may result from some kind of coarse graining
[17,18]. Here, we adopt a different point of view, also
advocated, e.g., in [8,9,15,19]. Even if one keeps all the
dynamical d.o.f., reconstructing the actual state of a given
(closed) system requires a precise knowledge of its inde-

pendent correlation functions. In practice, however, such
information is often not experimentally accessible and one
has to infer the state of the system from the subset of
measured correlation functions. This ‘‘incomplete descrip-
tion’’ picture actually underlies the very concept of ther-
malization [9,19]. Similarly, a system prepared in a pure
quantum state may appear as a statistical mixture to the
observer who has only partial information.
In this Letter, we show that, starting from a pure, coher-

ent quantum (Gaussian) state, an observer who only mea-
sures the subset of equal-time two-point functions observes
an effective loss of purity or coherence and, eventually,
(apparent) thermalization. We study a relativistic self-
interacting OðNÞ scalar field and present a complete nu-
merical solution of the nonequilibrium dynamics from a
1=N expansion of the 2PI effective action at next-to-
leading order [13]. The approach allows us to study the
strong coupling regime and is a valid description for states
with a high degree of quantum coherence which, as ex-
plained below, are characterized by strong—possibly non-
perturbative—field fluctuations.
A pure quantum state remains such under a unitary

evolution. Here, although the complete information about
the initial Gaussian state is contained in the set of two-
point functions, nontrivial higher correlators develop in
time due to the non-Gaussian dynamics: The information
about the initial state spreads in the space of correlation
functions and gets lost to our observer, resulting in the
effective loss of purity or coherence and, at late times, the
thermalization of the effective density matrix. We stress
that no environment of incoherent d.o.f. is needed. We
illustrate this point by preparing a completely pure initial
state. Finally, we show that the regime of decoherence,
characterized by strong field fluctuations, is well described
by classical (statistical) field theory.
We consider a relativistic real scalar field ’a (a ¼

1; . . . ; N) with classical action

S½’� ¼ �
Z

d4x

�
1

2
’aðhþm2Þ’a þ �

4!N
ð’a’aÞ2

�
; (1)
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where summation over repeated indices is implied. For
vanishing field expectation value, h’aðxÞi ¼ 0, the corre-
lation functions of the quantum theory can be obtained
from the 2PI effective action �½G�, parametrized by the
time-ordered connected propagator hT’aðxÞ’bðyÞi ¼
�abGðx; yÞ [20]. The 1=N expansion of �½G� at next-to-
leading order includes the infinite series of diagrams shown
in Fig. 1, where the lines represent the propagator G [13].

To set up the initial-value problem, it is useful to decom-
pose the two-point function G into a statistical (F) and a
spectral (�) component, both real functions:

Gðx; yÞ ¼ Fðx; yÞ � i
2 sgnCðx0 � y0Þ�ðx; yÞ: (2)

Notice that Fðx; yÞ ¼ Fðy; xÞ and �ðx; yÞ ¼ ��ðy; xÞ. For
Gaussian initial conditions, the equations of motion, ob-
tained as ��½G�=�Gðx; yÞ ¼ 0, read

½hx þM2ðxÞ�Fðx; yÞ ¼ �
Z x0

0
d4z��ðx; zÞFðz; yÞ

þ
Z y0

0
d4z�Fðx; zÞ�ðz; yÞ; (3)

½hx þM2ðxÞ��ðx; yÞ ¼ �
Z x0

y0
d4z��ðx; zÞ�ðz; yÞ; (4)

where
R
x0

0 d4z � R
x0

0 dz0
R
dz. The effective mass term is

given by

M2ðxÞ ¼ m2 þ �
N þ 2

6N
Fðx; xÞ; (5)

and the self-energies by [13]

�Fðx; yÞ ¼ �

3N

�
Fðx; yÞIFðx; yÞ � 1

4
�ðx; yÞI�ðx; yÞ

�
; (6)

��ðx; yÞ ¼ �

3N
½�ðx; yÞIFðx; yÞ þ Fðx; yÞI�ðx; yÞ�: (7)

The functions IF and I� resum the infinite series of bubble

diagrams in Fig. 1:

IFðx; yÞ ¼ �Fðx; yÞ �
Z x0

0
d4zI�ðx; zÞ�Fðz; yÞ

þ
Z y0

0
d4zIFðx; zÞ��ðz; yÞ; (8)

I�ðx; yÞ ¼ ��ðx; yÞ �
Z x0

y0
d4zI�ðx; zÞ��ðz; yÞ; (9)

with the elementary bubble

�Fðx; yÞ ¼ ��

6

�
F2ðx; yÞ � 1

4
�2ðx; yÞ

�
; (10)

��ðx; yÞ ¼ ��

3
Fðx; yÞ�ðx; yÞ: (11)

The self-energy kernels �F and �� describe scattering

and memory effects and are responsible for non-Gaussian
correlations to develop in time, a key ingredient in the
present discussion. Gaussian—collisionless—evolution
equations, such as leading-order large-N, or Hartree ap-
proximations, where the right-hand sides of Eqs. (3) and
(4) vanish identically, are known to fail to describe phe-
nomena such as damping of unequal-time correlators or
thermalization [10]. We show below that they also fail to
capture the physics of decoherence in the present approach.
We consider spatially homogeneous and isotropic states,

for which Fðx; yÞ � Fðx0; y0; jx� yjÞ. Accordingly, we
introduce the Fourier decomposition (p � jpj)

Fðt; t0; jrjÞ ¼
Z dp

ð2�Þ3 e
ip�rFpðt; t0Þ; (12)

and similarly for �ðx; yÞ. We consider an observer who
only has access to the subset of equal-time two-point

functions: FpðtÞ ¼ h’y
pðtÞ’pðtÞi, RpðtÞ ¼ 1

2 h’y
pðtÞ�pðtÞ þ

�y
pðtÞ’pðtÞi, and KpðtÞ ¼ h�y

pðtÞ�pðtÞi. The minimum-

bias state compatible with these measured observables is
described by an effective Gaussian density matrix [19]
DeffðtÞ ¼

Q
pDpðtÞ, where the product runs over indepen-

dent d.o.f. in momentum space with, up to a normalization,

DpðtÞ / expf�pðtÞ½FpðtÞ�y
pðtÞ�pðtÞ þ KpðtÞ’y

pðtÞ’pðtÞ
� RpðtÞð�y

pðtÞ’pðtÞ þ ’y
pðtÞ�pðtÞÞ�g; (13)

where �pðtÞ ¼ � ln½1þ 1=npðtÞ�=½2npðtÞ þ 1�, with

npðtÞ þ 1

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FpðtÞKpðtÞ � R2

pðtÞ
q

� apðtÞ: (14)

Contrarily to the correlators FpðtÞ, RpðtÞ, and KpðtÞ,
which can be modified by a canonical redefinition of the
field variables ð’;�Þ, npðtÞ is a canonical invariant and,

actually, the only truly intrinsic property of the density
matrix (13) [8]. It provides an absolute measure of the
quantum purity of the system’s state through [21]

tr ½D2
pðtÞ� ¼ ½2npðtÞ þ 1��1 � 1; (15)

which equals 1 for a pure state. Note also that, whenever
the system is well described by a thermal ensemble of
weakly interacting quasiparticle (QP), npðtÞ defines a QP

occupation number and follows a Bose-Einstein distribu-
tion as a function of the QP energy [13]. We shall make use
of this property to characterize the degree of thermalization
of the system, although we stress that none of our results
rely on such a QP interpretation.
Note finally that npðtÞ is time independent for Gaussian

approximations [22]. Therefore, no loss of quantum purity,
in the sense discussed here, occurs for such approxima-
tions. We stress that this is not in conflict with existing
studies of decoherence in free-field [7] or mean-field ap-

FIG. 1. The dots indicate that each diagram of the series is
obtained from the previous one by adding another bubble.
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proximations [18], which typically consider an effective
coarse-grained Gaussian density matrix where one aver-
ages out some rapidly varying d.o.f. This results in an
effective loss of information and hence of quantum purity
or coherence, due, e.g., to dephasing [18], already at the
Gaussian level. In the present incomplete description ap-
proach, decoherence is due to the non-Gaussian dynamics,
i.e., direct scattering and memory effects [23].

We now come to the discussion of quantum coherence
which, unlike purity, is a basis-dependent notion. The
equal-time two-point correlators can be parametrized as

�pðtÞFpðtÞ ¼ �apðtÞ½1� �pðtÞ cos�pðtÞ�; (16)

RpðtÞ ¼ � �apðtÞ�pðtÞ sin�pðtÞ; (17)

KpðtÞ=�pðtÞ ¼ �apðtÞ½1þ �pðtÞ cos�pðtÞ�; (18)

where

�a pðtÞ ¼
KpðtÞ þ �2pðtÞFpðtÞ

2�pðtÞ � �npðtÞ þ 1

2
(19)

provides an alternative definition of a QP occupation num-
ber �npðtÞ. Note that 0 � npðtÞ � �npðtÞ. Here, the energy

scale �pðtÞ defines the QP basis in which to discuss deco-

herence. We use �pðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2ðtÞp

, which we found

gives a good description of the oscillation frequency of
two-point correlators. The basis-dependent occupation
number �npðtÞ is related to the canonical invariant npðtÞ
through the coherence parameter [24]

�pðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2pðtÞ= �a2pðtÞ

q
: (20)

The case �pðtÞ ¼ 0 or, equivalently, npðtÞ ¼ �npðtÞ, corre-
sponds to the thermal-like density matrix DpðtÞ /
expf�pðtÞFpðtÞ½�y

pðtÞ�pðtÞ þ �2pðtÞ’y
pðtÞ’pðtÞ�g. This in-

cludes the vacuumlike state: npðtÞ ¼ �pðtÞ ¼ 0. More-

over, �pðtÞ controls the size of off-diagonal matrix ele-

ments of the density matrix in the so-called two-mode
coherent state basis [25]: The latter exhibits nontrivial
correlations (i.e., quantum coherence) between macro-
scopically distant semiclassical states for �pðtÞ ! 1.

Note that this limit is also characterized by strong field
fluctuations since the correlators FpðtÞ, RpðtÞ, and KpðtÞ
are / 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

pðtÞ
q

� 1.

At time t ¼ 0, we prepare modes with p � pc in a pure,
highly coherent quantum state characterized by npð0Þ �
1, �pð0Þ ¼ �0 � 1, and �pð0Þ ¼ �=2, while modes with

pc < p � �, with � the ultraviolet cutoff, are prepared in
a vacuumlike state: npð0Þ � 1 and �pð0Þ ¼ 0 [26]. We

emphasize that there are no incoherent d.o.f.: The initial
state is a completely pure quantum state. Equations (3)–
(11) are solved numerically without further approximation
(except for discretization of time or momentum integrals
and truncation of memory integrals). We show results for
pc=M0 ¼ 3:6 and �=M0 ¼ 10, where M0 ¼ Mð0Þ is the
initial effective mass.

Figure 2 presents an overview of the time evolution. It
shows snapshots of the function ln½1þ 1=npðtÞ� as a func-
tion of �pðtÞ at various times. One observes a substantial

growth of npðtÞ for all modes, signaling the effective loss of

quantum purity at early times, followed by a slow approach
to an effective quantum thermal equilibrium, characterized
by a Bose-Einstein distribution. The loss of quantum purity
is further illustrated in the inset, which shows the rapid
decay of tr½D2

pðtÞ� for modes p � pc.

After the loss of quantum purity, we find that �npðtÞ 	
npðtÞ, signaling a corresponding loss of quantum coher-

ence according to Eq. (20). Figure 3 shows the time evo-
lution of the coherence parameter �pðtÞ for the mode

p=M0 ¼ 0:15, for various sets of parameters. In all cases
we find that decoherence is well described by an exponen-
tial law. The inset shows the corresponding decoherence
rates for the modes p � pc.
Classical scaling.—In the highly coherent limit, �0 ! 1,

one has, roughly speaking F� 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

0

q
� �� 1,

which signals the enhancement of classical versus quantum
fluctuations [12]. In this regime one can neglect the second
term in brackets on the left-hand sides of Eqs. (10) and (6).
It is then easy to check that under the simultaneous rescal-
ing of the correlators and the coupling constant F ! 	F,
� ! �, and � ! �=	, with 	 an arbitrary constant, the F
and �- components of �, I, and � scale just as F and �,
respectively, and that Eqs. (3) and (4) are left invariant.
This is characteristic of the regime of strong field fluctua-
tions, where a classical (statistical) field theory description
is appropriate. Indeed, in classical field theory, the action
being defined up to a multiplicative constant, a rescaling of
the field (i.e., of the initial conditions) can be entirely
absorbed in a change of coupling. Therefore, as long as
the system is highly coherent [�pðtÞ � 1], we expect the

dynamics not to depend separately on �0 and �, but instead
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FIG. 2. The function ln½1þ 1=npðtÞ� as a function of �pðtÞ for
times M0t ¼ 2:5
 2n for n ¼ 0; . . . ; 14. A straight line at late
times corresponds to a Bose-Einstein distribution. The inset
shows the rapid decrease of tr½D2

pðtÞ� as a function of time for

modes (from bottom to top) p=a ¼ 1; 5; 10; 15; 20; 24, where
a=M0 ¼ 0:15. Higher momentum modes, p=a ¼ 25; 27; 30, are
also shown for comparison.
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on the combination �eff ¼ �=	 where 	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

0

q
. We

checked, from our numerical simulation of the full quan-
tum dynamics, that this is indeed the case during the early-
time decoherence regime, as illustrated in Fig. 3: Runs with
different values of �0 and � but the same �eff are essen-
tially indistinguishable. Furthermore, we observe that, de-
spite the rather strong (effective) couplings employed in
some simulations, the decoherence rates approximately
follow a perturbativelike �2

eff scaling.

As a final remark, we mention that fixing the value of the
initial mass M0 absorbs a large �2 dependence. This
simple, though approximate, renormalization turns out to
be numerically sufficient for the results presented here. We
find that if the late time thermalization is cutoff dependent,
a known artifact of Gaussian initial conditions [27], the
regime of effective loss of quantum purity or coherence is
largely cutoff insensitive.

To the best of our knowledge, this work provides the first
complete microscopic description of the process of deco-
herence in a realistic QFT. It is an exciting observation that
the relevant dynamics is well described by classical statis-
tical field theory, which can be solved exactly by means of
standard Monte Carlo techniques. A particularly interest-
ing question is to investigate how the present results are
modified as one includes higher order equal-time correla-
tion functions in the set of measured observables.
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useful suggestions. APC is unité mixte de recherche
UMR7164 (CNRS, Université Paris 7, CEA,
Observatoire de Paris).
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a function of rescaled time 
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mode p=M0 ¼ 0:15, for four couples of parameters (�0; �):
(0.99, 3.05) (solid line) and (0.95, 6.62) (long-dashed line), for
which �eff ¼ 21:7; (0.95, 2.2) (dashed line), for which �eff ¼
7:215; and (0.95, 0.915) (dotted line), for which �eff ¼ 3:0. The
inset shows the corresponding decay rates, obtained from ex-
ponential fits, for modes p � pc. The agreement of the first two
runs illustrates the �eff scaling of early-time decoherence. The
overall agreement shows the approximate �2

eff dependence of the

decoherence rate.
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