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2GAP-Optique, Université de Genève, CH-1211 Geneva, Switzerland

3H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom
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We present a multipartite nonlocal game in which each player must guess the input received by his

neighbor. We show that quantum correlations do not perform better than classical ones at this game, for

any prior distribution of the inputs. There exist, however, input distributions for which general no-

signaling correlations can outperform classical and quantum correlations. Some of the Bell inequalities

associated with our construction correspond to facets of the local polytope. Thus our multipartite game

identifies parts of the boundary between quantum and postquantum correlations of maximal dimension.

These results suggest that quantum correlations might obey a generalization of the usual no-signaling

conditions in a multipartite setting.
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In recent years, the study and understanding of quantum
nonlocality—the fact that certain quantum correlations
violate Bell inequalities [1]—has benefited from a cross-
fertilization with information concepts.

On one hand, nonlocality has been identified as a key
resource for quantum information processing. It allows, for
instance, the reduction of communication complexity [2],
and in the device-independent scenario, where onewants to
achieve an information task without any assumption on the
devices used in the protocol, it can be exploited for secure
key distribution [3], state tomography [4], and randomness
generation [5].

On the other hand, information concepts have provided a
deeper understanding of the nature of quantum nonlocality.
It is known, in particular, that the no-signaling principle
(no arbitrarily fast communication between remote parties)
is compatible with the existence of correlations more non-
local than those allowed in quantum theory [6,7]. However,
recent works have shown that the existence of such
stronger-than-quantum correlations would have deep
information-theoretic consequences: they would, for in-
stance, collapse communication complexity [8] and allow
perfect nonlocal computation [9]. In a related direction, it
has been realized that quantum correlations actually obey a
strengthened version of no-signaling, the principle of in-
formation causality [10].

Up to now, such questions have been almost exclusively
considered in the bipartite scenario. Here our aim is to
investigate the separation between quantum and no-
signaling correlations in a multipartite scenario. For this,
we introduce and study a simple multipartite nonlocal
game, guess your neighbor’s input (GYNI).

In GYNI, N distant players are arranged on a ring and
each receive an input bit xi 2 f0; 1g (see Fig. 1). The goal is

that each participant provides an output bit ai 2 f0; 1g
equal to its right-hand neighbor’s input bit:

ai ¼ xiþ1 for all i ¼ 1; . . . ; N; (1)

where xNþ1 � x1. The 2N possible input strings x ¼
ðx1; . . . ; xNÞ are chosen according to some prior distribu-
tion qðxÞ ¼ qðx1; . . . ; xNÞ, which is known to the parties.
The figure of merit of the game is given by the average
winning probability

! ¼ X
x

qðxÞPðai ¼ xiþ1jxÞ; (2)

where Pðai ¼ xiþ1jxÞ ¼ Pða1 ¼ x2; . . . ; aN ¼ x1jx1; . . . ;
xNÞ denotes the probability of obtaining the correct outputs
(1) when the players have received the input string x. Of
course, players are not allowed to communicate after the
inputs are distributed. Thus, their performance depends
only on the initially agreed-upon strategy and on the shared
physical resources.
The GYNI game captures a particular notion of signal-

ing: if the players were able to win with high probability,
their output would reveal some information about their
neighbor’s input. We therefore expect that the nonlocal

FIG. 1. Representation of the GYNI nonlocal game. The
goal is that each party outputs its right-hand neighbor’s input:
ai ¼ xiþ1.
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correlations of quantum theory cannot be exploited by
noncommunicating observers to perform better at GYNI
than using classical resources alone. We confirm this in-
tuition and prove that, indeed, quantum correlations pro-
vide no advantage over classical correlations. Surprisingly,
however, the no-signaling principle is not at the origin of
the quantum limitation: for N � 3, there exist input dis-
tributions q for which no-signaling correlations provide an
advantage over the best classical and quantum strategies.
This suggests the possibility that in a multipartite scenario,
quantum correlations obey a qualitatively stronger version
of the usual no-signaling conditions.

Each of the input distributions q associated with a non-
trivial no-signaling strategy defines a Bell inequality
whose maximal classical and quantum values coincide,
but whose no-signaling value is strictly larger. Inter-
estingly, some of these inequalities define facets of the
polytope of local correlations. We thus prove the existence
of nontrivial facet Bell inequalities with no quantum vio-
lation, answering a question raised by Gill [11]. Moreover,
since these Bell inequalities are facets, the GYNI game
identifies a portion of the boundary of the set of quantum
correlations of nonzero measure, in contrast with previous
information-theoretic or physical limitations on nonlocal-
ity [8–10,12–14].

GYNI with classical and quantum resources.—We start
by showing that the optimal classical and quantum winning
strategies are identical for any prior distribution q of the
inputs. Let us first show that there is a simple classical
strategy achieving a winning probability

!c ¼ max
x

½qðxÞ þ qð �xÞ�; (3)

where �x denotes the ‘‘negation’’ of the input string x, �x ¼
ð �x1; . . . ; �xNÞ with �xi ¼ xi � 1, and � denotes addition mod-
ulo 2. This strategy is based on the following simple
observation.

Let y be an arbitrary string: If x � y; �y;

there exists an i such that xi ¼ yi and xiþ1 � yiþ1: (4)

Indeed, if this was not the case, we would have that for any
i, either xi � yi or xiþ1 ¼ yiþ1. But this would in turn
imply that either x ¼ y or x ¼ �y, in contradiction with
the hypothesis.

Consider now a classical strategy specified by the string
y, where each party outputs the bit ai ¼ yiþ1 if it received
the input yi, and outputs ai ¼ �yiþ1 if it received �yi. It
obviously follows that Pðai ¼ yiþ1jyÞ ¼ 1 and Pðai ¼
�yiþ1j�yÞ ¼ 1. On the other hand, Pðai ¼ xiþ1jxÞ ¼ 0 for
all x � y; �y. Indeed, from observation (4), there exists an i
such that xi ¼ yi, but for which ai ¼ yiþ1 � xiþ1. The
winning probability of this classical strategy is thus equal
to ! ¼ qðyÞ þ qð�yÞ, which yields (3) if we take y to be
qðyÞ þ qð�yÞ ¼ maxx½qðxÞ þ qð �xÞ�.

We now prove that there is no better quantum (hence
classical) strategy. In the most general quantum protocol,

the parties share an entangled state jc i and perform pro-
jective measurements on their subsystem dependent on
their inputs xi. They then output their measurement results
ai. Denoting Mxi

ai the projection operator associated with
the output ai for the input xi, the probability that the N
players produce the correct output is thus given by

Pða1 ¼ x2; . . . ; aN ¼ x1jx1; . . . ; xNÞ ¼ hMx1
x2 � . . . �Mxn

x1 i;
and the average winning probability is

! ¼ X
x

qðxÞhMxi; (5)

where we have written Mx ¼ Mx1
x2 � � � � �Mxn

x1 for short.
The operators Mx satisfy the following properties:

M2
x ¼ Mx; (6)

and

MxMy ¼ 0 if x � y; �y: (7)

The first property follows from the fact that the Mx are
projection operators. The second property follows from the
orthogonality relations Mxi

aiM
xi
�ai
¼ 0 and observation (4).

Note that protocols involving mixed states or general mea-
surements can all be represented in the above form by
expanding the dimensionality of the initial state.
We now show, using (6) and (7), that! ¼ P

xqðxÞMx �
!c, where � should be understood as an operator inequal-
ity; i.e., A � B means that hAi � hBi for all jc i. First note
that

P
xqðxÞMx � P

xq
0ðxÞMx, where q0ðxÞ ¼ qðxÞ þ

½!c � qðxÞ � qð �xÞ�=2, since by definition !c � qðxÞ �
qð �xÞ � 0. It is thus sufficient to consider weights q such
that qðxÞ þ qð �xÞ ¼ !c for all x. We can then write

!c �
X
x

qðxÞMx ¼
� ffiffiffiffiffiffi

!c

p �X
x

�xMx

�
2

þ 1

2

X
x

½�xMx � � �xM �x�2; (8)

where �x ¼ ffiffiffiffiffiffi
!c

p � qð �xÞ= ffiffiffiffiffiffi
!c

p
and �x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðxÞqð �xÞ=!c

p
.

To verify this identity we only need to use (6) and (7) and
the fact that qðxÞ þ qð �xÞ ¼ !c. Note now that the right-
hand side of (8) is� 0, since it is a sum of square involving
only Hermitian operators. This shows that

P
xqðxÞMx �

!c, as announced.
The inequality

P
xqðxÞPðai ¼ xiþ1jxÞ � !c can be in-

terpreted as a Bell inequality whose local and quantum
bound coincide. It is well known that in order to achieve a
Bell violation in quantum theory one must perform mea-
surements corresponding to noncommuting operators. The
above proof, however, does not distinguish noncommuting
operators from ordinary, commuting numbers: it is based
on the algebraic identity (8) which follows only from
Eqs. (6) and (7), regardless of whether the Mx’s commute
or not. This explains why the classical and quantum bounds
are identical.
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GYNI with no-signaling resources.—At first sight, it may
seem that the quantum limitation on the GYNI game arises
from the no-signaling principle: if the players were able to
win with high probability, their output would somehow
depend on their neighbor’s input. This motivates us to look
at how players constrained only by the no-signaling prin-
ciple perform at GYNI.

Formally, the no-signaling principle states that the mar-
ginal distribution Pðai1 ; . . . ; aik jxi1 ; . . . ; xikÞ for any subset

fi1; . . . ; ikg of the n parties should be independent of the
measurement settings of the remaining parties [7], i.e., that

Pðai1 ; . . . ; aik jx1; . . . ; xNÞ ¼ Pðai1 ; . . . ; aik jxi1 ; . . . ; xikÞ:
This guarantees that any subset of the parties is unable to
signal to the other by their choice of inputs.

We show in Appendix A [15] that players constrained
only by no-signaling have a bounded winning probability
!ns � 2!c. They thus cannot win in general with unit
probability at GYNI. Furthermore, for certain input distri-
butions, such as the one where all input strings are chosen
with equal weight qðxÞ ¼ 1=2N , we show as expected that
!ns ¼ !c. That is, for uniform and completely uncorre-
lated inputs, any resource performing better than a classical
strategy is necessarily signaling.

Surprisingly, this property is not general. There exist
distributions qðxÞ for which no-signaling strategies outper-
form classical and quantum strategies. Consider for in-
stance the following input distribution

qðxÞ ¼
�
1=2N�1 if x1 � � � � � xN̂ ¼ 0
0 otherwise;

(9)

where N̂ ¼ N if N is odd and N̂ ¼ N � 1 if N is even. It
easily follows from the previous analysis that for classical
and quantum resources, !c ¼ 1=2N�1. We now prove,
however, that no-signaling resources can achieve !ns ¼
4=3!c. Note that the distribution (9) can be interpreted as a
promise that the sum of the inputs (modulo 2) is equal to
zero. This prior knowledge does not yield any information
to the parties about the value of their neighbor’s input, yet it
can be exploited by no-signaling correlations to outper-
form classical strategies.

We start by considering the case N ¼ 3, for which

! ¼ 1
4½Pð000j000Þ þ Pð110j011Þ þ Pð011j101Þ
þ Pð101j110Þ�; (10)

where Pð000j000Þ ¼ Pða1 ¼ 0; a2 ¼ 0; a3 ¼ 0jx1 ¼ 0;
x2 ¼ 0; x3 ¼ 0Þ, and so on. Consider the first three terms in
(10). The no-signaling principle implies that

Pð000j000Þ � X
a3

Pð00a3j000Þ ¼
X
a3

pð00a3j001Þ;

Pð110j011Þ � X
a2

Pð1a20j011Þ ¼
X
a2

pð1a20j001Þ;

Pð011j101Þ � X
a1

Pða111j101Þ ¼
X
a1

pða111j001Þ:

(11)

By normalization of probabilities, the sum of the right-
hand sides of Eqs. (11) is upper bounded by one, and thus
Pð000j000Þ þ Pð110j011Þ þ Pð011j101Þ � 1. Similar
conditions are obtained for any of the four possible combi-
nations of three terms in Eq. (10). Summing over these
possibilities, we find 3½Pð000j000Þ þ Pð110j011Þ þ
Pð011j101Þ þ Pð101j110Þ� � 4, or in other words !ns �
4=3	 1=4 ¼ 4=3!c. Furthermore, the inequality is satu-
rated only if the four probabilities appearing in (10) are all
equal to 1=3. It turns out that the remaining entries of the
probability table PðajxÞ ¼ Pða1a2a3jx1x2x3Þ can be com-
pleted in a way that is compatible with the no-signaling
principle; i.e., the bound!ns � 4=3!c is achievable. Up to
relabeling of inputs and outputs, there exist two inequiva-
lent classes of extremal no-signaling correlations achieving
this winning probability (see Appendix B in [15]). One of
them takes the form PðajxÞ ¼ 2=3gða;xÞ þ 1=3g0ða;xÞ,
where g and g0 are the following Boolean functions

gða;xÞ ¼ a1a2a3ð1 � x1Þð1 � x2Þð1 � x3Þ;
g0ða;xÞ ¼ ð1 � a1Þð1 � a2Þð1 � a3Þ � x1a2a3

� a1x2a3 � a1a2x3 � x1x2x3: (12)

From this definition, it is easy to verify that
Pða1a2a3jx1x2x3Þ satisfies the no-signaling conditions
and achieves winning probability !ns ¼ 1=3 ¼ 4=3!c.
The existence of no-signaling correlations achieving

!ns ¼ 4=3!c in the case N ¼ 3 is enough to show that
!ns � 4=3!c for any N � 3. This can be seen as follows.
Consider the situation in which the first three parties use
the optimal strategy for N ¼ 3 while the remaining parties
simply output their input. In this case, all the terms in !
vanish, except the four terms Pð000; 0 . . . 0j000; 0 . . . 0Þ,
Pð110; 0 . . . 0j011; 0 . . . 0Þ, Pð011; 1 . . . 1j101; 1 . . . 1Þ, and
Pð101; 1 . . . 1j110; 1 . . . 1Þ, which are all equal to 1=3.
Beyond these analytical results, we obtained the maxi-

mal no-signaling values of !ns up to N ¼ 7 players using
linear programming. The ratios !ns=!c of no-signaling to
classical winning probabilities are 4=3 for N ¼ 3; 4, 16=11
for N ¼ 5; 6, and 64=42 for N ¼ 7, showing that for more
parties there exist no-signaling correlations that can out-
perform the optimal no-signaling strategy forN ¼ 3. (Note
that it can be shown that the winning probability for an odd
number N of parties is always equal to the winning proba-
bility for N þ 1 players; see Appendix C in [15].)
GYNI Bell inequalities.—The GYNI Bell inequalitiesP
xqðxÞPðai ¼ xiþ1jxiÞ � !c are not violated by quantum

theory, but can be violated by more general no-signaling
theories. In [11], Gill raised the question of whether there
exist Bell inequalities which (i) feature this ‘‘no quantum
advantage’’ property and (ii) define facets of the polytope
of local correlations. Here we give a positive answer to this
question. We have checked that the GYNI inequalities
defined by the distribution (9) are facet defining for N �
7 players. More generally, we verified that the inequalities
defined by the distribution qðxÞ having uniform support on
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�N̂
i¼1xi ¼ 0 are facet defining for all N � 7. We conjecture

that they are facet defining for any number of parties. Note
also that the polytope of local correlations for the caseN ¼
3 (with binary inputs and outputs) was completely charac-
terized in [16]; the inequality corresponding to (10) be-
longs to the class 10 of [16]. Geometrically, our result
shows that the polytope of local correlations and the set
of quantum correlations have in common faces of maximal
dimension [we recall that a facet corresponds to a ðd�
1Þ-dimensional face of a d-dimensional polytope].

This also implies that GYNI is an information-theoretic
game that identifies a portion of the boundary of quantum
correlations which is of nonzero measure. To the best of
our knowledge, all previously introduced information-
theoretic or physical principles recovering part of the
quantum boundary—including nonlocal computation [9],
nonlocality swapping [12], information causality [10,13],
and macroscopic locality [14]—only single out a portion of
zero measure [17].

Discussion and open questions.—Our work raises plenty
of new questions. First, it would be interesting to under-
stand the structure of those input distributions q leading to
a gap between no-signaling and classical or quantum cor-
relations (see Appendix A in [15] for a class of distribu-
tions for which there is no gap). For instance, in the case of
four parties, the distribution q having uniform support on
x1 � x2 � x3 � x1x2x3 ¼ 0 leads to !ns ¼ 4=3!c. How-
ever, the corresponding Bell inequality is not a facet.
Another question is thus to single out, among all relevant
input distributions, those corresponding to facet Bell in-
equalities. For three parties, it follows from [16] that the
distribution (9) is the unique possibility.

A further interesting problem is whether there exist facet
Bell inequalities with no quantum advantage in the bipar-
tite case. Note that our GYNI inequalities are nontrivial
only for N � 3; for the case N ¼ 2, the classical and no-
signaling bounds are always equal. In Ref. [9], examples of
bipartite Bell inequalities with no quantum advantage have
been presented in the context of nonlocal computation.
However, as mentioned earlier, none of the Bell inequal-
ities associated with nonlocal computation have been
proven to be facet defining. We studied this question here
and could prove that none of the simplest inequalities from
[9] (corresponding to the family of inequalities specified by
the parameters n ¼ 2; 3 in [9]) are facet inequalities. The
proof uses a mapping from these inequalities to the space
of correlation inequalities for n parties, two settings and
two outcomes, which was fully characterized in Ref. [18];
see Appendix D in [15] for a detailed proof. We conjecture
that none of the Bell inequalities introduced in [9] are facet
defining.

Coming back to our original motivation, it would be
interesting to get a deeper understanding of the structure
and information-theoretic properties of the no-signaling
correlations giving an advantage over classical or quantum
correlations, for instance, those associated with inequality

(10). In particular, it would be interesting to understand if
they can be exploited for other information tasks. Finally,
our results suggest that the quantum limitation on the
GYNI game might originate from a generalization of the
no-signaling principle in a multipartite setting. Can this
intuition be made concrete? Are there more general infor-
mation tasks with no quantum advantage?
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