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Recent experiments on imbalanced Fermi gases have raised interest in the physics of an impurity im-

mersed in a Fermi sea, the so-called Fermi polaron. In this Letter, a simple theory is devised to describe di-

lute Fermi-polaron ensembles corresponding to the normal phase of an imbalanced Fermi gas. An exact

formula is obtained for the dominant interaction between polarons, expressed solely in terms of a single-

polaron parameter. The physics of this interaction is identified as a signature of the Pauli exclusion

principle.
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Quasiparticles are generic emergent properties of many-
body systems that simplify the description of complex
interacting ensembles of particles. This concept is proba-
bly one of the most important in quantum physics since it
lies at the foundation of fields as diverse as chemistry of
dilute solutions, dressed atom theory in atomic physics,
and band theory in solid state physics. Recently, experi-
ments on spin-imbalanced ultracold Fermi gases [1–3]
have highlighted, once again, its importance by showing
that the main features of the phase diagram of these sys-
tems could be understood quantitatively from the proper-
ties of an impurity immersed in a Fermi sea of spin-
polarized atoms, the Fermi polaron [4–7]. It was shown,
in particular, that the quasiparticle arising from the inter-
action between the impurity and the surrounding Fermi gas
could be described with great accuracy by assuming that a
single-particle-hole pair is excited [8,9]. The single-
particle properties of the Fermi polaron have been charac-
terized experimentally and theoretically and are now well
understood. For instance, at unitarity, where the scattering
length between the majority and minority spins is infinite,
the chemical potential of the impurity is shifted by �p ¼
A�1, where A ¼ �0:61 and�1 is the chemical potential of
the majority [4,5,9,10]. Similarly, the effective mass is
found to be close to the bare mass m, with m� ¼ 1:20 m
for recent experiments [3,11,12], close to the theoretical
values obtained from variational or Monte Carlo calcula-
tions [4,6,8,9].

More generally, the Fermi polaron is a good description
of an impurity immersed in a Fermi sea around unitarity
and of ‘‘attractive’’ (a < 0) interactions where A and m�
have also been calculated with great accuracy [6,8,13].
Interestingly, the dressed impurity undergoes a transition
from a fermionic polaron to a bosonic molecule at
1=kF1a� 0:9 [6,10,14–17], where kF1 ¼ ð6�2n1Þ is the
Fermi wave vector of the majority species gas of density
n1. This transition modifies the collective behavior of an
ensemble of impurities. In particular, in the fermionic
sector 1=kF1a < 0:9, pioneering fixed node Monte Carlo
simulations have shown that, for a small concentration of

minority fermions, the equation of state of an imbalanced
normal Fermi gas with two spin species denoted � ¼ 1, 2
and densities n� could be fitted by a Landau-Pomeranchuk
law,

E ¼ EFG1

�
1þ 5A

3
xþ m

m� x
5=3 þ Fx2

�
; (1)

where x ¼ n2=n1, EFG1 is the energy of a single-
component (majority) Fermi gas with density n1, and F
describes interactions between polarons [4,18]. A, m�, and
F are functions of 1=kF1a. This Fermi liquid picture is
supported by the absence of vortices in rotation experi-
ments indicating a normal state [1]. By contrast, it was
noted recently that experimental data could be fitted with
great accuracy by a grand-canonical equation of state
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which apparently describes a mixture of two ideal Fermi
gases of polarons and majority atoms [3,19]. However, the
presence of a �1 dependence of �p in the polaron part of

the equation of state implies a coupling between the two
gases, and the two equations of state can be reconciled by
noting that, expressed in the canonical ensemble, Eq. (2)
indeed yields Eq. (1) with F ¼ 5A2=9� 0:2 at unitarity,
close to the Monte Carlo value F� 0:14 [4].
In this Letter, we show that the equation of state of the

normal phase follows the phenomenological expansion (1).
Moreover, we argue that the relationship between F and A
is exact and can be generalized to the full Bose-Einstein
condensate–Bardeen-Cooper-Schrieffer (BCS) crossover:
Indeed, we will show that the parameter F is solely a
function of the single-polaron chemical potential and is
given by

F ¼ 5

9

�
d�p

dEF1

�
2
; (3)

where �p is computed in the low impurity concentration

limit where �1 ¼ EF1 ¼ @
2k2F1=2m. Finally, the study of

the BCS regime corresponding to small and negative val-
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ues of a allows us to clarify the origin of the x2 term in
Eq. (1). We attribute it to a modification of the single-
polaron properties due the Pauli blocking, created by the
presence of the minority Fermi sea and overruling density-
mediated polaronic interactions [20] which contribute to

the higher-order x7=3.
The starting point of our demonstration is the celebrated

Luttinger sum rule, stating that if a many-body fermionic
system can be analytically connected to an ideal Fermi gas
[21], then it possesses a Fermi surface where the momen-
tum distribution is discontinuous and which encloses a
volume depending only on density [22,23]. More quanti-
tatively, the Fermi surface is given by the wave-vector kF�
solutions of the equation,

�kF;� þ��ð! ¼ 0; kF�;�1; �2Þ ¼ 0; (4)

where �k� ¼ @
2k2=2m��� and �� is the self-energy of

spin � particles. By definition, the single-polaron chemical
potential �p is obtained for vanishingly small impurity

densities n2, and is thus the solution of the equation [8]

�p ¼ �2ð! ¼ 0; k ¼ 0;�1; �2 ¼ �pÞ; (5)

and depends only on�1. Since we consider the situation of
dilute polarons corresponding to a small concentration of
impurities, the minority Fermi sea remains small and �2

can be expanded in the vicinity of �p. Let us assume for

the moment that �2 is analytic in �2 and kF2, or k
2
F2 by

rotational invariance. Expanding Eq. (5) up to fourth order,
we thus get [24]
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with ��2 ¼ �2 ��p. The equation of state of the dilute

impurity gas is obtained from the leading-order terms, i.e.,
the first three terms in Eq. (6),

�2 ¼ �p þ @
2k2F2
2m� ; (7)

where

m�

m
¼ 1þ 2m@k2�2=@

2

1� @�2
�2

(8)

is the usual definition for the effective mass of a quasipar-

ticle. Using the Luttinger sum rule we know that kF2 ¼
ð6�2n2Þ1=3, and combined with the Gibbs-Duhem relation
@�i

P ¼ ni, Eq. (7) leads to a pressure Pð�iÞ identical to
Eq. (2). To convert this equation of state in the canonical
ensemble, we use the relationship

�1 ¼ EF1

�
1þ x

d�p

d�1

�
2=3

; (9)

�2 ¼ �p þ EF2; (10)

where EF2 ¼ @
2k2F2=2m

� and we have neglected higher-
order terms in n2 that appear when taking the derivative of
m� with �1. Making use of the definition of the grand
potential�PV ¼ E�P

i�iNi, we finally get the Landau-
Pomeranchuk law (1), with F given by (3).
We now verify that Eq. (3) is not altered when higher

orders in Eq. (6) are included. Indeed, replacing ��2 by its
leading-order expression, terms neglected in Eq. (6) give
rise to a k4F2 contribution to ��2ðkF2Þ. From the Gibbs-

Duhem relation this gives rise to a term / ð�2 ��pÞ7=2 in
Eq. (2), hence a x7=3 contribution to the energy. For vanish-
ing x, this term is therefore negligible against x2 and does
not contribute to the value of F; this argument proves that,
provided analyticity conditions are fulfilled, Eq. (3) gives
the exact value of F.
We now provide evidence for the analyticity of �2. To

do so, we make use of a time-ordered diagrammatic ex-
pansion of the self-energy illustrated in Fig. 1 [25]. For
each diagram, a line going forward (backward) in time is
associated with a �ð�k;�Þ [�ð��k;�Þ], with � the Heaviside

step function, and contributes �k;� to the energy denomi-

nator. In addition, the incoming (outgoing) minority line
contributes to ! (�!). The main point of the argument is
the negativity of �p, and of �2 for a small impurity

concentration. Indeed, in this case, �k;2 is always positive,

which implies that the Heaviside functions associated with
impurities traveling backward in time vanish. As a conse-
quence, diagrams containing an impurity loop do not con-
tribute to the self-energy, and similarly, the inner part of the
‘‘main’’ impurity line cannot travel back in time. The
denominators are therefore always strictly positive, and
this absence of pole guarantees the analyticity of �2.
This can be interpreted physically by noting that the mi-
nority Fermi sea would be empty at these negative chemi-
cal potentials for a vanishing interaction. The creation of
minority fermions is therefore only triggered by interaction
processes with the majority component.
The above ideas are best illustrated by going to the BCS

weak coupling limit a ! 0�, where exact perturbative
calculations can be performed. The gas of fermions with
two spin species is described by the Hamiltonian

H ¼ X
k;�

"kc
y
k;�ck;� þ g

V

X
k;k0;q

cykþq;1c
y
k0�q;2

ck0;2ck;1; (11)

where "k ¼ @
2k2=2m, V is a quantization volume, and

ck;� annihilates a fermion of spin � and momentum k. The

kk kk

k

k1 k2 k3

k

k1 k2 k3
k1 k2 k3

FIG. 1. Diagrammatic representation of second-order pertur-
bation theory. Integration over frequencies allows one to decom-
pose the leftmost diagram into two time-ordered diagrams. Since
�2 is negative, inner minority lines traveling backward in time
are forbidden, and the rightmost term vanishes.
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zero-range interaction potential in Eq. (11) suffers from
ultraviolet divergences that are cured by imposing a cutoff
kc in momentum space. The Lippmann-Schwinger formula
then relates the bare coupling constant g to the scattering
length,

1

g
¼ m

4�@2a
� 1

V

X
k

1

2"k
: (12)

Building on the Luttinger equation (4) relating �2 and kF2
for the minority fermions, we wish to determine the equa-
tion of state Pð�iÞ in the strongly imbalanced case with
�1 > 0 and �2 < 0. The self-energy �2 is calculated
perturbatively in powers of g. In addition, Eq. (12) is
used to expand the resulting expressions again in powers
of a. The renormalizability of the model (11) imposes that
ultraviolet divergences cancel out for each order in a, and
the cutoff kc is eventually taken to infinity.

The first order is given by the usual Hartree diagram,

�ð1Þ
2 ð!; qÞ ¼ ðg=6�2Þð2m�1=@

2Þ3=2. We write the second

order using the time-ordered diagrams displayed in Fig. 1,

�ð2Þ
2 ð!;qÞ¼ g2

V 2

X
k;q0

�ð�k;1Þ�ð�qþq0�k;2Þ�ð��q0;1Þ
!�ð�qþq0�k;2þ�k;1��q0;1Þ

þ g2

V 2

X
k;q0

�ð��k;1Þ�ð��qþq0�k;2Þ�ð�q0;1Þ
!�ð�qþq0�k;2þ�k;1��q0;1Þ ;

(13)

where the minority travels partially backward in time in the
second term and always forward in the first one. As stated
earlier, the negative minority chemical potential implies
that �qþq0�k;2 is positive, and the second term of Eq. (13)

thus vanishes in accordance with our general rule that
backward travel is suppressed. Moreover, for the remaining
first term in Eq. (13), the denominator does not vanish as
long as !<��2, and the self-energy can be freely ex-
panded with respect to �2 and q at ! ¼ 0.

Using the complete self-energy�ð1Þ
2 þ�ð2Þ

2 , it is possible

to calculate �p with the result

�p ¼ 2a

3�@m
ð2m�1Þ3=2 þ a2

�2
@
2m

ð2m�1Þ2: (14)

Using Eq. (3), we see that, including up to third order,
the interaction parameter F should read

F ¼ 20

9

�
kF1a

�

�
2
�
1þ kF1a

�

�
þ . . . : (15)

It is illuminating to check the weak coupling prediction
(15) for the interaction by a direct calculation of the ground
state energy using the standard Rayleigh-Schrödinger per-
turbation theory. We first discuss the energy of a single
polaron EpolðqÞ. The unperturbed state is then an impurity

with momentum q immersed in a Fermi sea of majority
atoms. The first-order correction to the energy is the mean-
field correction gn1, while the next-order correction in-
volves the excitation of particle-hole pairs out of the ma-

jority Fermi sea. By definition of EpolðqÞ, the energy of the
system is given by E ¼ EFG1 þ EpolðqÞ with

EpolðqÞ¼@
2q2

2m
þgn1þ g2

V 2

X
k0;q0

1

"q0 þ"q�"qþq0�k0 �"k0
;

(16)

where the majority momenta q0 and k0 satisfy the condi-
tions q < kF1 (i) and k > kF1 (ii) imposed by the Pauli
exclusion principle.
We switch now to an ensemble of impurities, in which

case two ideal Fermi gases with Fermi wave vectors kF1
and kF2 constitute the unperturbed ground state with en-
ergy EFG;1 þ EFG;2. The energy takes the form Eðn1; n2Þ ¼
EFG;1 þ ~E,

~E ¼ EFG;2 þVgn1n2

þ g2

V 2

X
k0;q0;q

1

"q0 þ "q � "qþq0�k0 � "k0
; (17)

with the previous restrictions (i) and (ii) complemented by
q < kF2 (iii) and jqþ q0 � k0j> kF2 (iv), where the last
two conditions are imposed by the Pauli exclusion princi-
ple in the presence of the minority Fermi seas. Except for
the constraint (iv), ~E would simply be

P
q<kF2

EpolðqÞ,
which constitutes the energy of an ideal gas of polarons
with a dispersion relation EpolðqÞ. However, we can recover
this term explicitly by expressing (iv) in terms of its
complementary domain (v) jqþ q0 � kj< kF2, in which
case we can recast Eq. (17) as

~E¼ X
q<kF2

EpolðqÞ� g2

V 2

X
ðiÞ;ðiiÞ
ðiiiÞ;ðvÞ

1

"q0 þ"q�"qþq0�k0 �"k0
:

(18)

The first term in Eq. (18) corresponds to an ideal gas of

polarons and contributes to the x and x5=3 scaling terms in
Eq. (1), that is, to A and m�. The second term describes the
effect of Pauli blocking due to the minority Fermi sea on
the formation of the polaron. A careful analysis of its
behavior for low kF2 shows that it scales as x2 and thus
gives the effective interaction F between polarons.
The complete calculation of third-order corrections is

lengthy but straightforward. In the limit x � 1, one finds
again Eq. (1) for the ground state energy, together with an
interaction parameter F arising again from Pauli blocking
and identical to Eq. (15).
The argument presented above makes a strong case for a

x2 interaction between polarons. However, noticing that an
s-wave interaction gives a x2 scaling and a p-wave inter-

action gives a subleading x7=3, this may seem to contradict
the fermionic nature of polarons. On the other hand, Fermi
liquid theory does not forbid alike particles to interact, and
the corresponding interaction is in fact not necessarily
short-ranged. This paradox can be solved by noting that
polarons have fermionic statistics at large distances and are
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composite objects at shorter distances. From this structure,
they acquire an internal energy �p ¼ A�1. This single-

polaron energy is held fixed in the grand-canonical en-
semble and is not modified by the presence of other impu-
rities. By contrast, the internal energy depends on the
minority concentration in the canonical ensemble through
Pauli blocking, which yields the x2 interaction in Eq. (1).
Based on these arguments, it is probably not surprising to
find that F is solely a function of the internal energy as
given by Eq. (3).

Finally, in Fig. 2, we compare our prediction, Eq. (3),
where �p is calculated using the variational scheme pre-

sented in [8], with the third-order expansion, Eq. (15), as
well as Monte Carlo data [18]. As expected, we observe
that the perturbative expansion and the nonperturbative
result coincide for a ! 0�. In the strongly interacting limit
we observe that our result follows the same trend as the
Monte Carlo simulation, with, in particular, the presence of
a maximum of F close to 1=kF1a� 0:5.

In conclusion, we have demonstrated that in the low
impurity concentration, the canonical equation of state of
a spin-imbalanced system could be described by a Landau-
Pomeranchuk energy. Quite surprisingly, we have shown
that the interaction parameter F is related to single impu-
rity properties. Several extensions of this Letter are worth
exploring. From experimental data, it appears that Eq. (2)
is valid in a wide range of impurity concentrations (up to
x ¼ 0:5 at unitarity). This surprisingly large validity do-
main remains to be understood by investigating higher
orders or by making use of nonperturbative schemes. In
fact, assuming further analyticity, the low density expan-
sion performed here can, in principle, be extended to any
order in x. The coefficients of the expansion are then ex-
pressed solely in terms of the single-polaron self-energy.
Other open issues include the extension of our results to the
one-dimensional situation [26,27] and to the case of re-
pulsive interactions [28].
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