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Private states are those quantum states from which a perfectly secure cryptographic key can be

extracted. They represent the basic unit of quantum privacy. In this work we show that all states belonging

to this class violate a Bell inequality. This result establishes a connection between perfect privacy and

nonlocality in the quantum domain.
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Classical and quantum information theory (QIT) are
mainly theories about resources [1]. Quantum features
however make the quantum theory richer and more power-
ful than its classical counterpart. This richness is reflected
by the variety of different resources appearing in the quan-
tum formalism. These are for instance entanglement [2],
i.e., the existence of compound states that do not admit a
description in terms of probabilistic combinations of prod-
ucts of states representing individual subsystems, secret
correlations [3], that is, correlations that cannot be created
by public communication, and nonlocal correlations (see
below) [4]. While some of these resources, e.g., secret
correlations, are also found in the classical formalism,
most of them do not have a classical analogue. This allows
performing tasks that are not achievable in the classical
world such as quantum teleportation [5] or secure key
distribution [6,7]. The two general questions the theory
addresses are (i) understanding those quantum resources
necessary to accomplish an information task and
(ii) establishing interconversion laws between all the dif-
ferent resources.

A key step when comparing and quantifying resources
consists of the identification of the basic unit for each of
them. It is well established that a Bell state, that is, a two-
qubit maximally entangled state, represents the basic unit
of entanglement, known as e-bit [8]. Moving to secret
correlations, Horodecki et al. showed that private states
are the basic unit of privacy in the quantum domain [9,10].
Clearly, all these states are entangled, as entanglement is a
necessary condition for secure key distribution [11,12].
However, a Bell state is just the simplest state belonging
to the larger class of private states. This implies that the
distillation of privacy from quantum states is not equivalent
to entanglement distillation, as it was commonly believed.
Indeed, key (entanglement) distillation from a quantum
state � can be understood as the process of extracting
copies of private (Bell) states out of many copies of �.
This nonequivalence is behind the existence of bound
entangled states that, though not allowing for distillation
of the Bell states [13], are a resource for secure key
distillation [9,10].

Beyond these results, however, the principles allowing
for secure key distillation from quantum resources, a cru-
cial question in QIT, are hardly understood. In order to
achieve this, it is essential to identify the quantum proper-
ties common to all private states. It is well known that Bell
states are nonlocal since they violate the Clauser-Horne-
Shimony-Holt (CHSH) Bell inequality [14]. Moved by this
fact, one could ask whether all private states violate a Bell
inequality. This is a priori unclear, as private states may
exhibit radically different entanglement properties [10].
In this work we address the above question and show

that all private states are indeed nonlocal. This result is
general, as our proof works for any dimension and any
number of parties. Private states, then, not only represent
the unit of quantum privacy, but also allow two distant
parties to establish a different quantum resource, namely,
nonlocal correlations. These states contain the strongest
form of entanglement as they can give rise to correlations
with no classical analogue. More generally, our findings
point out an intriguing connection between two of the most
intrinsic quantum properties: privacy and nonlocality.
Preliminaries.—Before proceeding with the proof of our

results, we recall in what follows the notions of nonlocality
and private states.
Consider first a Bell-type experiment in which party i

can measure one of the ki observables fAðjiÞ
i g (ji ¼

1; . . . ; ki), each with rðjiÞi outcomes denoted by aðjiÞi 2
f1; . . . ; rðjiÞi g. We say that there exists a local model for
this experiment if the conditional probabilities

Pðaðj1Þ1 ; . . . ; a
ðjNÞ
N jAðj1Þ

1 ; . . . ; A
ðjNÞ
N Þ of obtaining result aðjiÞi

upon the measurement of AðjiÞ
i , can be written in the

following form

Pðaðj1Þ1 ; . . . ; a
ðjNÞ
N jAðj1Þ

1 ; . . . ; A
ðjNÞ
N Þ

¼
Z

d�Pð�ÞPðaðj1Þ1 jAðj1Þ
1 ; �Þ . . .PðaðjNÞN jAðjNÞ

N ; �Þ: (1)

Fine [15] showed that the existence of this model for the
experiment is equivalent to the existence of a joint proba-

bility distribution Pðað1Þ1 ; . . . ; aðk1Þ1 ; . . . ; að1ÞN ; . . . ; aðkNÞN Þ in-
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volving all local measurements, such that the margi-
nal probabilities reproduce the observed measured
outcomes. The observed correlations are said to be non-
local if the conditional probability distributions

Pðaðj1Þ1 ; . . . ; aðjNÞN jAðj1Þ
1 ; . . . ; AðjNÞ

N Þ do not admit a local

model. An N-partite quantum state �N is then nonlocal
whenever it is possible to find local measurements leading
to nonlocal correlations when applied to �N .

Now, let us pass to the definition of private states
[9,10,16,17]. In general, these are N-partite states that
can be written as

�ðdÞ
AA0 ¼ 1

d

Xd�1

i;j¼0

ðjiihjjÞ�NA �Ui�A0Uy
j ; (2)

where �A0 is some density matrix, fUig a set of unitary
operations, and A ¼ A1 . . .AN and A0 ¼ A0

1 . . .A
0
N are

multi-indices referring to subsystems. The subsystem
marked with the subscript A consists of N qudits and is
called the key part. The remaining subsystem is the shield
part and is defined on some arbitrary finite-dimensional
product Hilbert space H 0 ¼ H 0

1 � . . . �H 0
N . Party i

holds one particle from the key part Ai and one from the
shield part A0

i. The key point behind the private states is that
log2d bits of perfectly secure bits of cryptographic key can

be extracted from �ðdÞ
AA0 [9,18].

All private states are nonlocal.—We are in position to
prove our main result. We divide the proof into two parts.
First, following the ideas of Ref. [16], we show that using
local quantum operations (represented by appropriately
chosen quantum channels) without any use of classical
communication, the key part of any private state (subsys-
tem A), can be brought to the form

%ðdÞ
N ¼ Xd�1

k;l¼0

�klðjkihljÞ�N (3)

with �kk ¼ 1=d and at least one off-diagonal element non-
zero; i.e., there exists a pair of indices k < l such that�kl �
0. Note that the shield part is discarded during this process.
Second, we show that any state of the form (3) with �kl �
0 is nonlocal. Finally, the fact that local operations without
classical communication cannot produce a nonlocal state
from a local one implies that all private states are nonlocal.

Let us now proceed with the first part of the proof. For
this aim we assume that the ith party performs, on its
subsystems Ai and A0

i, the quantum operation represented
by the following quantum channel

�ðiÞð�Þ ¼ VðiÞð�ÞVðiÞy þWðiÞð�ÞWðiÞy; (4)

where the Kraus operators VðiÞ and WðiÞ are given by

VðiÞ ¼ X
k

jkihkjAi
� ~VðiÞ

k ; WðiÞ ¼ X
k

jkihkjAi
� ~WðiÞ

k :

The operators ~VðiÞ
k and ~WðiÞ

k act on the shield part belonging

to the ith party (the A0
i subsystem) and are chosen so that

they define a proper quantum measurement. Precisely,

given ~VðiÞ
k we define the second Kraus operator to be ~WðiÞ

k ¼
ð1� ~VðiÞy

k
~VðiÞ
k Þ1=2, with 1 being the identity matrix acting

on the A0
i subsystem. Application of all the channels�ðiÞ to

�ðdÞ
AA0 results in the following state

ON
i¼1

�ðiÞð�ðdÞ
AA0 Þ ¼ 1

d

Xd�1

k;l¼0

jkihlj�N � X2N
n¼1

XðnÞ
k Uk%A0Uy

l X
ðnÞy
l ;

where matrices XðnÞ
k are defined as members of the

2N-element set f ~VðiÞ
k ; ~WðiÞ

k g�N. Explicitly, one has Xð1Þ
k ¼

~Vð1Þ
k � . . . � ~VðNÞ

k , Xð2Þ
k ¼ ~Vð1Þ

k � . . . � ~VðN�1Þ
k � ~WðNÞ

k , and

so on. Tracing now the shield part we get the promised state
(3) with �kl given by

�kl ¼ Tr

�ON
i¼1

ð ~VðiÞy
l

~VðiÞ
k þ ~WðiÞy

l
~WðiÞ
k ÞUk%U

y
l

�
: (5)

One also finds that, since by construction ~VðiÞy
k

~VðiÞ
k þ

~WðiÞy
k

~WðiÞ
k ¼ 1 for any i, the diagonal elements �kk of

this state are equal to 1=d.
Now we need to show that at least one of the above

coefficients is nonzero. In other words, for some fixed pair

of k and l (k < l) we need to choose the operators ~VðiÞ
k and

~VðiÞ
l in such a way that �kl is nonzero. To this aim we

simplify a little our considerations by assuming that the

operators ~VðiÞ
k and ~VðiÞ

l corresponding to ith party are posi-

tive and diagonal in the same basis. Thus, we can write
these particular operators in the form

~V ðiÞ
k ¼ X

m

vðiÞ
m jeðiÞm iheðiÞm j; ~VðiÞ

l ¼ X
m

�vðiÞ
m jeðiÞm iheðiÞm j;

where we assume that the eigenvalues satisfy vðiÞ
m , �vðiÞ

m 2
½0; 1� and the eigenvectors jeðiÞm i are orthonormal, i.e.,

heðiÞm jeðiÞn i ¼ �mn (note that the fixed indices k, l we are
interested in are omitted in the right-hand side of the
previous expression). This, in turn means that the operators
~WðiÞ
k and ~WðiÞ

l are also diagonal in the basis fjeðiÞm ig, and have
eigenvalues ð1� vðiÞ2

m Þ1=2 and ð1� �vðiÞ2
m Þ1=2, respectively.

As a consequence the operator appearing in parenthesis in
Eq. (5) simplifies to

~V ðiÞy
l

~VðiÞ
k þ ~WðiÞy

l
~WðiÞ
k ¼ X

m

�ðiÞ
m jeðiÞm iheðiÞm j; (6)

where its eigenvalues are given by �ðiÞ
m ¼ vðiÞ

m �vðiÞ
m þ ð1�

vðiÞ2
m Þ1=2ð1� �vðiÞ2

m Þ1=2 and obviously satisfy 0 � �ðiÞ
m � 1.

Now, putting Eq. (6) to Eq. (5), we get

�kl¼
X

m1;...;mN

�ð1Þ
m1
. . .�ðNÞ

mN
heð1Þm1

j . . .heðNÞ
mN

jUk�U
y
l jeð1Þm1

i . . .jeðNÞ
mN

i:

(7)

Finally, to prove that �kl � 0 it suffices to notice that for

any nonzero matrix X (and in particular Uk�U
y
l ) there
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always exists at least one N partite product vector jc i ¼
jc 1i . . . jc Ni such that hc jXjc i is nonzero. Otherwise, if
for all such vectors hc jXjc i ¼ 0, the matrix X has to be
the zero matrix (see Lemma 2 of Ref. [19]).

As just discussed, there exists a product vector jc i such
that hc jUk�U

y
l jc i � 0 for a pair of indices k < l.

Therefore we can always chose ~VðiÞ
k and ~VðiÞ

l for each party

in such way that jc i is one of the product vectors appear-
ing in Eq. (7) (more precisely, jc ii can be set as one of

eigenvectors of ~VðiÞ
k and ~VðiÞ

l ). Now, we can use the freedom

in the numbers �ðiÞ
m in such a way that �kl � 0, which is

exactly what we wanted to prove. Actually, we can always

choose ~VðiÞ
kðlÞ so that at least one of the coefficients �’s in

each row and column of %ðdÞ
N is nonzero.

Let us move to the second part of the proof. In what
follows we show that any state of the form (3) is nonlocal.
First we will consider the bipartite case and then we will
move to the multipartite scenario.

Bipartite case (d ¼ 2).—A generic form of the simplest
example of bipartite private states (two-qubit key part)
reads (zeros denote null matrices of adequate dimension)

�ð2Þ
AA0 ¼ 1

2

U0�A0Uy
0 0 0 U0�A0Uy

1

0 0 0 0
0 0 0 0

U1�A0Uy
0 0 0 U1�A0Uy

1

0
BBB@

1
CCCA: (8)

After applying the previous local quantum operations to
this state the parties are left with a two-qubit state:

%ð2Þ
2 ¼

1=2 0 0 �01

0 0 0 0
0 0 0 0
��
01 0 0 1=2

0
BBB@

1
CCCA: (9)

Since we already know that �01 � 0, it follows from the
criterion proposed in Ref. [20] that the above state violates
the CHSH-Bell inequality [14] (here written in the equiva-
lent Clauser-Horne form [21])

PðA1B1Þ þ PðA2B1Þ þ PðA1B2Þ
� PðA2B2Þ � PðA1Þ � PðB1Þ � 0: (10)

Here PðAiBjÞ denotes the probability that Alice and Bob

obtain the first result upon the measurement of observables
Ai and Bj (i, j ¼ 1, 2). Recall that the CHSH test involves

the measurement of two dichotomic observables per site.
Bipartite case (d > 2).—For higher dimensional bipar-

tite private states we use the fact that the inequality (10)
only involves one measurement outcome for each of the
observables. For this purpose, let us first assume that some

�kl is nonzero and rewrite %ðdÞ
2 [cf. Eq. (3)] as

%ðdÞ
2 ¼

. .
. ..

. ..
.

� � � 1=d � � � �kl � � �
..
. . .

. ..
.

� � � ��
kl � � � 1=d � � �
..
. ..

. . .
.

0
BBBBBBBBB@

1
CCCCCCCCCA
: (11)

The marked 2� 2 submatrix can be seen, up to a normal-
ization factor 2=d, as a two-qubit state like the one given in
Eq. (9). As we have just shown, any such two-qubit state
with nonzero off-diagonal element is nonlocal. Therefore,

to prove nonlocality of %ðdÞ
2 we can design the observables

Ai and Bi (i ¼ 1, 2) so that their first outcomes correspond
to one-qubit projectors (embedded in Cd) leading to the
violation of (10) by the corresponding two-qubit state.

Precisely, we take the projectors P ðiÞ
A ¼ jc iihc ij and

P ðiÞ
B ¼ j ~c iih ~c ij (i ¼ 1, 2), where the pure states jc ii

and j ~c ii are of the general one-qubit form ajki þ bjli.
The remaining outcomes (which are irrelevant from the
point of view of the inequality (10) of the involved observ-

ables AiðBiÞ can just correspond to projectors 1� P ðiÞ
AðBÞ

(i ¼ 1, 2).
Now, by using these settings in the CHSH test (10), one

sees that the state (11) leads to almost the same violation as
for the two-qubit state in Eq. (9) with the only difference
being the normalization factor 2=d. Clearly, this does not
cause any problem since the same factor appears in all the
terms of the inequality. Therefore it does not change the
sign of the CHSH parameter (10). As a conclusion the

CHSH-Bell inequality for any bipartite state %ðdÞ
2 is also

violated.
Multipartite case.—We now move to the multipartite

case. In order to prove the nonlocality of the states (3)
we exploit the fact that, given a generic N-partite state, �N,
if there exist local projections of N �m particles onto a
product state leaving the remaining m particles in a non-
local state, �m, the initial state �N is nonlocal. This follows
from the fact that one cannot produce in this way a non-
local state from a local one. The same reasoning was used,
e.g., in Ref. [22] in the context of proving the nonlocality
of general multipartite pure entangled states.
Indeed, denote by Ai (i ¼ mþ 1; . . . ; N) the local mea-

surements (with outcomes ai) by the previous N �m
parties such that for one of the outcomes, say 0, the state
�m shared by the remaining m parties is nonlocal. For the
sake of simplicity we assume that the nonlocality of this
m-partite state can be proven with only two measurements
per site, Ai and A0

i with outcomes ai and a0i (i ¼ 1; . . . ; m)
(our reasoning can be trivially adapted to Bell tests involv-
ing more measurements). According to Fine’s result (see
above), there cannot exist a joint probability distribution
Pða1; a01; . . . ; am; a0mjamþ1 ¼ 0; . . . ; aN ¼ 0Þ reproducing
the observed outcomes for the m parties conditioned on
the fact that the measurement result for the remaining
N �m parties was equal to 0. Now, consider a Bell test
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for the initial N-partite state �N where the parties apply all
the previously introduced measurements. Assume that
the obtained statistics can be described by a local model.
Then, there exists a joint probability distribution
Pða1; a01; . . . ; am; a0m; amþ1; . . . ; aNÞ. But this would imme-
diately imply the existence of the joint probability distri-
bution Pða1; a01; . . . ; am; a0mjamþ1 ¼ 0; . . . ; aN ¼ 0Þ, which
is in contradiction with the fact that %m is nonlocal. Thus,
the initial state �N has to be nonlocal.

Using this argument, in order to prove the nonlocality of

multipartite states %ðdÞ
N it is enough to build local projec-

tions mapping these states into a nonlocal state of a fewer
number of particles. Consider the local projections P� onto

j�i ¼ ð1= ffiffiffi
d

p Þðj0i þ . . .þ jd� 1iÞ. Projecting an arbi-

trary subset of N �m particles of %ðdÞ
N onto P� the remain-

ing m parties are left with following m-partite state

%ðdÞ
m ¼ Xd�1

k;l¼0

�klðjkihljÞ�m: (12)

Thus, if N � 2 parties apply the projector P� to the state

(3), the remaining two parties are left with a bipartite

private state %ðdÞ
2 . However, we have just shown that this

state is nonlocal. Thus, %ðdÞ
N must also be nonlocal.

Discussion.—Private states play a relevant role in QIT
because they represent perfectly secure bits of crypto-
graphic key [9,10,17]. Knowing their entanglement prop-
erties is crucial to understand the mechanism allowing for
secure key distribution from quantum states. In general,
private states are thought to have a weaker form of entan-
glement than Bell states. However, we have shown here
that all private states are nonlocal. They have, then, the
strongest form of quantum correlations, since the results of
local measurements on these states cannot be reproduced
by classical means.

Finally, it would be interesting to study how our findings
can be related to the Peres conjecture [23], a long-standing
open question in quantum information theory. This con-
jecture states that bound entangled states do not violate any
Bell inequality. The intuition is that these states have a very
weak form of quantum correlations. Then, all the correla-
tions obtained from these states should have a classical
description. Note, however, that there exist bound en-
tangled states with positive partial transposition which
are arbitrarily close (in the trace norm) to private states
[9,10,17,18,24]. This is indeed the reason why these ex-
amples of bound entangled states have nonzero distillable
cryptographic key. But, as shown here, all private states are
nonlocal. One would then be tempted to conclude that
these bound entangled states are also nonlocal.
Interestingly, the situation is subtler than initially thought.
In fact, recall that the nonlocality of private states has been
proven here by showing the violation of the CHSH-Bell
inequality. Unfortunately, this inequality cannot be vio-
lated by bound entangled states with positive partial trans-

position [25]. This implies that the violation of this
inequality by private states arbitrarily close to bound en-
tangled states has to be very small. In view of all these
findings it appears interesting to analyze the nonlocal
properties of bound entangled states with positive distil-
lable secret key.
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