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Decision making in a noisy and dynamically changing environment is a fundamental task for a cell. To

choose appropriate decisions over time, a cell must be equipped with intracellular kinetics that can

conduct dynamic and efficient decision making. By using the theory of sequential inference, I demonstrate

that dynamic Bayesian decision making can be implemented by an intracellular kinetics with a dual

positive feedback structure. I also show that the combination of linear instantaneous and nonlinear

stationary sensitivities to the input dominantly contributes to decision making efficiency, and that the

state-dependent sensitivity change further suppresses noisy response. The statistical principles underlying

these two factors are further clarified to be a log-likelihood-dependent quantification of the input

information and uncertainty-dependent sensitivity control.
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Cells are subject to unpredictable environmental
changes with regard to the presence of nutrients, toxic
molecules, or signaling molecules from other cells.
While cells respond passively to such an uncertain environ-
ment in some cases, they have developed, in other cases,
intracellular kinetics that allow them to actively make a
decision by quickly detecting a change in the received
signals. Depending on the type of decision, the problem
of decision making by a cell is relevant to a variety of
intracellular phenomena such as differentiation, metabolic
switching, apoptosis, and chemotaxis [1–3]. Of particular
interest is that cells can make such a decision even with
substantial noise in the environment and intracellular re-
actions [4–8]. However, little is known about what kind of
intracellular kinetics can conduct efficient decision making
from noisy information.

To address this problem, Bayes theory and rate distor-
tion theory have been applied for chemotaxis, gene regu-
latory machinery, and development [9–13]. However, only
stationary decision making problems have been mainly
addressed. The stationary decision making is not sufficient
because it requires a versatile memory, which a cell lacks,
to store all input, and because a cell makes decisions over
time. Yet to be revealed is, therefore, the relation between
decision making dynamics and its implementation by intra-
cellular kinetics [14,15]. To this end, I formulate the dy-
namic decision making of a cell as a sequential Bayesian
inference problem in which the state of the environment,
hidden information for a cell, is estimated from a series of
noisy observations.

The simplest decision that a cell makes is whether the
environment is in a certain state or another, denoted as the
O state and 06 state, respectively [Fig. 1(a)]. This random
change of the environmental state xt 2 X � f06 ; Og is sta-
tistically modeled by a two-state continuous Markov pro-
cess in which the transition rate from xt ¼ 06 to xt ¼ O and
from xt ¼ O to xt ¼ 06 is rO and r06 , respectively [16]. A

cell, in general, obtains the information of the state from
noisy reactions of receptors on its membrane. Since the
state of each receptor is also binary (i.e., active or inactive),
the state of receptors can be represented by a vector of bi-
nary variables st, where the jth component of st is the state

of the jth receptor at time t: sjt 2 S � f0; 1g[Fig. 1(a)].
The length of the vector, N0, is the total number of recep-

FIG. 1 (color online). (a) Schematic diagram of dynamic de-
cision making of a cell. (b) A sample path of noisy receptor
activation, NðtÞ, and the responses of Bayesian (BA), linear input
(LI), dual input (DI), and zero-order ultrasensitivity (ZU) ki-
netics to NðtÞ. The intervals during which xt ¼ O are designated
with filled regions. Parameter values are N0 ¼ 100, �O ¼ 0:14,
�06 ¼ 0:1, rO ¼ r06 ¼ 0:03, � ¼ 1, vLI ¼ 1=6, vDI ¼ �d=4,
nDI ¼ ½ðrO þ r06 Þ�d þ N0vDI�d�=ð5rOvDIÞ, KDI ¼ �d=�r,

vZU ¼ 1=4, Kon ¼ Koff ¼ ðrO þ r06 Þ=½2ðN0�d � ðrO þ r06 Þ�.
These values are determined so that each kinetics has similar
stationary sensitivity and time scale to those of BA kinetics.
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tors. I model the stochastic activation of the jth receptor by
a Poisson point process in which the parameter �jðtÞ ¼
�jðxtÞ � 0 is a function of the state of the environment. For

readability, I abbreviate �jðx ¼ OÞ and �jðx ¼ 06 Þ as �j
O

and �j
06 , respectively.

Next, I derive the statistically optimal kinetics to se-
quentially infer the posterior probability Pðxtjs0:tÞ that
the environment is xt from the sequence of receptor
activities s0:t. s0:t0 represents the receptor state st from t ¼
0 to t ¼ t0. By using the theory of sequential Bayesian
inference [17], I obtain Pðxt0 js0:t0 Þ ¼ Pðst0 jxt0 Þ �
½ðPxt2XPðxt0 jxtÞPðxtjs0:tÞÞ=ðPðst0 js0:tÞÞ�, where t0 ¼
tþ �t. For sufficiently small �t during which each re-
ceptor gets active at most once and the state of the environ-
ment changes at most once, I can then obtain the follow-

ing approximations [18]: Pðst0 jxt0 ¼ xÞ � Q
j½ð�j

x�tÞ=
ð1� �j

x�tÞ�s
j

t0 ð1� �j
x�tÞ, Pðxt0 ¼ ~xjxt ¼ xÞ � r~x�t, and

Pðxt0 ¼ xjxt ¼ xÞ � ð1� r~x�tÞwhere ~x ¼ Xnx. For sim-

plicity, I also assume that �j
x ¼ �x for all j, and �j

O > �j
06 ,

without loss of generality. An activated receptor is also
assumed to get inactive in �, which is much smaller than
1=�O, that is, the average waiting time between consecu-
tive receptor activations. By taking the limit of �t ! 0
under these approximations and assumptions (see supple-
mentary material in Ref. [19] for more detail), I obtain

dP ðtÞ
dt

¼P ðtÞ ~P ðtÞ½�rN0SðtÞ�N0�d�þrO
~P ðtÞ�r06 PðtÞ;

where P ðtÞ is an abbreviation of Pðxt ¼ Ojs0:tÞ, ~P ðtÞ ¼
1� P ðtÞ, �r ¼ log�O

�06
, �d ¼ �O � �06 , NðtÞ is the total

number of active receptors at t, and SðtÞ :¼ NðtÞ=N0� is
the effective input per receptor. This kinetics is referred to
as Bayesian kinetics (BA kinetics) in this Letter. As shown
in Fig. 1(b), the BA kinetics robustly and efficiently iden-
tifies changes in the environment even though the input
signal NðtÞ is extremely noisy. This property is not sensi-
tive to a change in � when � is not very large.

The dynamics of this equation can be identified with a
covalent modification reaction with autoregulatory feed-
backs [Fig. 1(a)] if the equation is rearranged as follows:

dP
dt

¼ FBAðP ; SðtÞÞ�GBAðP ; SðtÞÞþ rO
~P � r06 P ; (1)

where FBAðP ; SðtÞÞ and GBAðP ; SðtÞÞ are defined in
Table I. In Eq. (1), P corresponds to the ratio of molecules
in the active state in the covalent modification reaction
[Fig. 1(a)]. FBAðP ; SðtÞÞ can be regarded as an activation

reaction that is induced by active receptors and is also
positively regulated by activated molecules as autophos-
phorylation does. In contrast, GBAðP ; SðtÞÞ is a spontane-
ous inactivation reaction, which is positively regulated by

inactive molecules. Furthermore, rO
~P ðtÞ and r06 P ðtÞ can be

interpreted as leaky activation and inactivation without the
autoregulations, respectively. Depending on the parameter
values of the autoregulatory and leaky reactions, Eq. (1)
can be interpreted as a covalent modification reaction with
either dual positive feedbacks, single positive feedback, or
no feedback. Such a modification reaction with a single
positive feedback loop is a typical motif of the signaling
network for chemotaxis, for example, which consists of the
reaction of PIP2 and PIP3 via Cdc42/Ras [20]. This motif
enables a chemotactic cell to robustly determines the di-
rection of ligand sources even though the directional in-
formation is substantially impaired by noisy reactions
[6,10,21,22]. Moreover, autophosphorylative regulation
has been observed in various important intracellular ki-
netics [23]. In addition, dual positive feedback structures
have recently been observed experimentally in the gene
regulatory networks for the determination of the fates of
embryonic stem cells and T cells [1,24,25]. These facts
suggest that statistically efficient kinetics may be em-
ployed in intracellular reactions to conduct decision mak-
ing and signal processing.
In order to further investigate the efficiency of BA

kinetics, I analyzed three different intracellular kinetics:
linear input kinetics (LI kinetics), dual input kinetics (DI
kinetics), and zero-order ultrasensitivity kinetics (ZU ki-
netics) [26]. These kinetics are obtained by modifying the
autoregulatory activation and inactivation reactions of BA
kinetics as summarized in Table I. Figure 1(b) shows the
responses of these kinetics to the same noisy input as that
of BA kinetics. Of the three kinetics, the simplest, LI
kinetics, which lacks autoregulatory interactions, cannot
respond sharply to the input signal [Fig. 1(b)], which is
quantified by the highest error rate (ER) and mean absolute
error (MAE) in Figs. 2(a) and 2(b) at �O ¼ 0:14. As
demonstrated in Fig. 3, the stationary response of LI ki-
netics to constant input S is a Michaelis-Menten type,
while the other kinetics show highly nonlinear sigmoidal
responses. This result indicates that high stationary sensi-
tivity is required for efficient decision making. However,
the stationary sensitivity is not sufficient for the efficiency
because the ER and MAE of DI kinetics are much higher
than those of ZU and BA kinetics (Fig. 2).
As obviously seen from Table I, the dominant difference

between DI kinetics and ZU and BA kinetics is the origin

TABLE I. FzðP ; SÞ and GzðP ; SÞ for z ¼ linear input (LI), dual input (DI), zero-order ultrasensitivity (ZU), and BA kinetics.

z LI DI ZU BA

FzðP ; SÞ ½vLIN0�rS� ~P ½vDIN0
SnDI

SnDIþKDI
nDI
� ~P ½vZUN0�rS� ~P

~PþKon
½N0�rSP � ~P

GzðP ; SÞ ½vLIN0�d�P ½vDIN0
K

nDI
DI

SnDIþK
nDI
DI

�P ½vZUN0�d� P
PþKoff

½N0�d
~P �P
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of the nonlinearity in the stationary response. In DI ki-
netics, the nonlinearity in the stationary response is attrib-
uted to the nonlinear dependency of FDI and GDI on S. In
other words, the nonlinear stationary sensitivity comes
from the nonlinear instantaneous sensitivity to the input.
From the viewpoint of linear response theory, this result is
natural because amplification of noise accompanies the
high stationary sensitivity that is required for a quick
response to a change in the environment [27,28]. The
trade-off between a quick response and robustness to noise
cannot be resolved except by employing nonstationary
dynamics of kinetics. In contrast to DI kinetics, ZU and
BA kinetics show nonlinear stationary sensitivity even
though their FðP ; SÞ depend linearly on S. This means
that their nonlinear stationary sensitivity results from the
intrinsic dynamics of these kinetics. Since both ZU and BA
kinetics have low ER (Fig. 2), the combination of the
nonlinear stationary sensitivity and the linear instanta-
neous sensitivity is the dominant factor of dynamic deci-
sion making by which a cell can quickly detect the actual
change of the environment.

Although there is not much difference between ERs of
ZU and BA kinetics, the MAE of BA kinetics is much
lower than that of ZU kinetics. This means that BA kinetics
is less sensitive to input noise than ZU kinetics when the
environment is not changing, while it can detect the change
of environment as fast as ZU kinetics. This robustness to
input noise can be explained by the state-dependent sensi-
tivity change, which is implemented in BA kinetics as the

quadratic dependence of FðP ; SÞ on P . Owing to this
dependency, P ðtÞ of BA kinetics changes only when the
deviation of the input SðtÞ from the expected value of the
current estimate continues for a certain time, which is
induced by the actual change in the state of the environ-
ment. In other words, the state-dependent sensitivity makes
BA kinetics less sensitive to the input noise by enabling it
to optimally integrate the temporally consecutive informa-
tion of the input. In summary, the efficiency of the decision
making dynamics is determined dominantly by the combi-
nation of the nonlinear stationary sensitivity and the linear
instantaneous sensitivity to S, and the quadratic depen-
dence of the instantaneous sensitivity on P . Since these
properties can be quantified experimentally, they will be
good experimental targets to test whether a given intra-
cellular kinetics can potentially conduct statistically effi-
cient decision making.
The meaning of these factors for the efficiency of dy-

namic decision making can be further clarified from the
statistical viewpoint. Let PBðx;pÞ be a Bernoulli distribu-
tion on x 2 X with the success parameter p, and let
PPoðn;�Þ be a Poisson distribution with the mean parame-
ter �. Then, Eq. (1) can be represented as

dP ðtÞ
dt

¼ VBðP ðtÞÞIðNðtÞÞþ rO
~P ðtÞ � r06 P ðtÞ; (2)

where VBðP Þ ¼ P ~P , and IðNðtÞÞ ¼
logPPoðNðtÞ; �N0�OÞ� logPPoðNðtÞ; �N0�06 Þ. IðNðtÞÞ rep-
resents the information about the current state of the envi-
ronment obtained from the input NðtÞ, and the second term
of Eq. (2) predicts the future state from the current estimate
by using the prior knowledge. The information, IðNðtÞÞ, is
independent of P ðtÞ and is quantitatively measured by the
difference between the log likelihoods that NðtÞ active
receptors are observed in the two environmental states.
The linearity of the instantaneous sensitivity is, therefore,
inherited from the Poisson statistics of the receptor activa-
tions. The information obtained from the receptor activa-
tions is subsequently integrated into P after being
weighted with VBðP ðtÞÞ. Since VBðP ðtÞÞ is the variance
of PBðx;P Þ, it can be interpreted as a measure of the
uncertainty in the current estimate of the environment.
When the uncertainty of the estimate, VB, is large, then
the information of the input signal is emphasized. When
the uncertainty of the estimate is small, in contrast, the
input information is less emphasized, leading to statisti-
cally optimal integration of consecutive information from
the input. The nonlinear stationary sensitivity automati-
cally accompanies the combination of this kinetics and
the linear term when rO is close to r06 and the contribution

of the linear term is much smaller than that of
VBðP ðtÞÞIðNðtÞÞ. Therefore, the statistical principle under-
lying the high performance of BA kinetics is characterized
by the log-likelihood-dependent quantification of input
information and the uncertainty-dependent sensitivity
control.
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FIG. 2 (color). The error rates defined as 1
T

R
T
0 dtIdðjxt �

P ðtÞj> 1
2Þ (a), mean absolute error defined as 1

T �R
T
0 dtjxt � P ðtÞj (b) of each kinetics as a function of �O where

IdðuÞ ¼ 1 when u is true and IdðuÞ ¼ 0 otherwise. The red,
orange, green, and purple solid curves correspond to BA, LI, DI,
and ZU kinetics, respectively. The dashed curve represents the
result obtained by BA kinetics with infinitely small �.
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As already demonstrated, the application of statistical
inference to intracellular kinetics gives us fruitful new
insights into cellular dynamics and its functions.
However, the inference theory is not self-contained for
characterization of intracellular kinetics because inference
corresponds only to the decoding of information from
observed input signals. Encoding and transduction of in-
formation also play crucial roles for the information pro-
cessing. In this Letter, for example, the encoding and the
transduction processes correspond to the environmental
dynamics, xt, and the stochastic receptor kinetics, s0:t,
respectively. Even though the optimal inference kinetics
is employed, the accuracy of the inferred state will be poor
when s0:t carries little information on xt, as shown in the
region where �O < 0:12 in Fig. 2. In contrast, if s0:t carries
sufficient information on xt (for example, �O > 0:22 in
Fig. 2), the state of the environment can be inferred (de-
coded) even with a suboptimal kinetics, and the efficiency
of BA kinetics can be lower than others when � is not
sufficiently small. In the information theory, such in-
formation of xt that s0:t contains can be quantified by the
mutual information between xt and s0:t, I½xt;s0:t� :¼RR

Pðxt; s0:tÞ log½ðPðxt; s0:tÞÞ=ðPðxtÞPðs0:tÞÞ�dxtds0:t. In
my case, I½xt; s0:t� is explicitly calculated as

I½xt; s0:t� ¼
Z

DKLðPBðZ;P ÞjjPBðZ; �POÞÞ�tðP ÞdP :

DKLðPjjP0Þ is the Kullback-Leibler divergence between

the probability distribution P and P0, �PO ¼ rO=ðrO þ
r06 Þ, and �tðP 0Þ ¼ R

�ðP 0 � Pðxt ¼ Ojs0:tÞÞPðs0:tÞds0:t.
Since P ðtÞ ¼ Pðxt ¼ Ojs0:tÞ, �tðP 0Þ is the probability
that P ðtÞ becomes P 0 at t calculated by an infinite number
of independent realizations of x0:t and s0:t. Because

DKLðP BðZ;P ÞjjP BðZ; �POÞÞ is concave with respect to
P , the mutual information is high when �tðP Þ consolidates
near P ðtÞ ¼ 0 or P ðtÞ ¼ 1. Because the variance of
P BðZ;P Þ is small when P ðtÞ is close to either 0 or 1,
this condition means that the inferred state of xt has little
statistical ambiguity when the mutual information is high.
The total performance of the intracellular information
processing [Fig. 1(a)] is, therefore, determined by the
combination of the efficiencies of information transduc-
tion, x0:t ! s0:t, and decoding, s0:t ! P ðtÞ. Moreover, if
the kinetics of xt is biologically controllable as when the
input S comes from other cells, an efficient encoding by
appropriate design of the kinetics of xt will also be im-
portant for the intracellular information processing. Thus, a
comprehensive theory for information encoding [12], in-
formation transmission [29,30], and information decoding
has to be developed for understanding the information-
theoretic aspects of more complicated biological phe-
nomena [9,12,31,32].
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