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Using quantitative measurements of protein aggregation rates, we develop a kinetic picture of protein

conversion from a soluble to a fibrillar state which shows that a single free energy barrier to aggregation

controls the addition of protein molecules into amyloid fibrils, while the characteristic sublinear

concentration dependence emerges as a natural consequence of finite diffusion times. These findings

suggest that this reaction does not follow a simple chemical mechanism, but rather operates in a way

analogous to the landscape models of protein folding defined by stochastic dynamics on a characteristic

energy surface.
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The phenomenon of amyloid formation from peptides
and proteins has intricate connections with a variety of
normal and aberrant biological processes [1], ranging from
epigenetic information transfer [2] to protein misfolding
disorders in humans [1,3]. Protein self-assembly is con-
sequently at the focus of studies, ranging from detailed
kinetic experiments [4–6] to coarse grained and atomic
level simulations [7], to shed light on the mechanisms
underlying the assembly process. In this Letter, we dem-
onstrate that an analytical model considering Langevin
dynamics of polymers on a characteristic energy surface
captures the key experimental features of the growth of
fibrillar protein aggregates and therefore establishes close
connections between the phenomenon of amyloid growth
and the landscape models of protein folding [8–10].

Amyloid growth occurs through the attachment of sol-
uble precursor proteins to the ends of fibrillar nanostruc-
tures [5]. We describe protein molecules as Gaussian
polymers [11] with N segments evolving in a potential
G1 which results from the interactions with the fibril end.
The physical origin of this potential is in the direct electro-
static interactions between the charged protein and the
fibril end, as well as in contributions from van der Waals
and hydrophobic interactions; in addition the breakage and
formation of noncovalent contacts within and between
polypeptide chains as well as with solvent molecules will
contribute to this potential. Further implicit contributions
to G stem from the projection of the reaction trajectory
onto polymer degrees of freedom in the absence of an
explicit description of water degrees of freedom [12]. We
describe the dynamics of such a system by the overdamped
Langevin equation: �@txi ¼ �@xiGðx1; . . . ; x3NÞ þ �iðtÞ,
where the 3N coordinates of chain segments undergo
stochastic motion on the energy surface Gðx1; . . . ; x3NÞ ¼P

3N
i¼1 G1ðxiÞ þ �=2

P
3N�3
i¼1 ðxi � xiþ3Þ2 given by the

connectivity-enforcing harmonic potentials and the exter-
nal potential G1. The thermal noise �i satisfies the

fluctuation-dissipation theorem h�i�ji ¼ 2kBT��ij. The

reaction rate is then given by the total probability flux
from one basin of the energy surface, corresponding to a
fibril of length j and a separate monomer, Fj þM, to

another basin describing the energetically more favorable
fibril of length jþ 1: Fjþ1 (Fig. 1). This flux can be

computed by considering the corresponding Fokker-
Planck equation

@tc ¼ �divJ; with Ji ¼ �D½@xic þ �c @xiG�; (1)

where� ¼ ðkBTÞ�1 and c ðx1; . . . ; x3N; tÞ is the probability
density of the polypeptide chain in a configuration with the
segment coordinates [xi].
Equation (1) is a continuity equation, the right-hand side

(rhs) of which represents the n-dimensional divergence of
a diffusion current; following [13,14] we rewrite the cur-
rent components as Ji ¼ �De��G@xic e�G with the diffu-

sion coefficient of the segments D¼kBT=��10�9 m2 s�1

FIG. 1. Amyloid growth through diffusive sampling of an
energy surface G. The reaction rate is determined through the
flux from the reactants (A :¼ Fj þM) to the product (B :¼
Fjþ1). An arbitrary path � from A to B in the proximity of the

saddle point z is shown in black. The current at the saddle point
is in the z direction as discussed in the text and the plane for the
perpendicular degrees of freedom yi is shown in gray.
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[15]. We then consider the line integral between two points
A, B connected by the path �:

Z
�
e�GJidxi ¼ �D

Z
�
@xic e�Gdxi: (2)

As the integrand on the rhs is a total derivative, the ex-
pression is simply equal to

c ðBÞe�GðBÞ � c ðAÞe�GðAÞ � �c ðAÞe�GðAÞ; (3)

where we assume that the fibril end B acts as a deep sink
and so removes freely diffusing polymers from solution:
c ðBÞ ¼ 0. Because of its exponential form, the integral on
the left-hand side of (2) has the main contribution from the
portion of the path near the saddle point z between A and
B. An appropriate linear transformation [16] represents the
energy as

G�Gz��z2

2
þ1

2

X3N�1

i¼1

�iy
2
i þkBT lnð1þ�R=�DÞ; (4)

where the current is parallel to the z direction, Fig. 1. The
additional entropic term S1 ¼ kB lnð�=�0Þ ¼ �kB lnð1þ
�R=�DÞ arises from the constraint imposed by the confined
geometry of the fibril end which implies that the barrier
crossing through diffusion in conformational space can
only be attempted by one molecule at a time; therefore of
all the possible microstates �0 we need to consider only a
subset� ¼ �0�D=ð�R þ �DÞ selecting the attempts occur-
ring during the fraction of time 	 ¼ �D=ð�R þ �DÞ when
the site is free, where �R is an average effective residency
time and �D is a diffusive arrival time which shall be
evaluated below. As in the steady state @yiJi þ @zJz ¼ 0,

the current density Jz does not vary around the saddle point
in the reaction direction, we can compute the total flux �
over the saddle point as the surface integralR
dy1 . . . dy3N�1Jz of Jz over the perpendicular degrees

of freedom yi at the saddle point:

� ¼ Dc ðAÞe�GðAÞ e
��½Gz�TS1�

rz
Y3N�1

i¼1

ri; (5)

where the length scales rz ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
kBT=�

p
and ri ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
kBT=�i

p
result from the Gaussian integration.

We now examine the term c ðAÞe�GðAÞ from the rhs (3).
Point A represents the reactants, i.e., the protein far away
from the fibril and the free energy GðAÞ �
�=2

P
3N�3
i¼1 ðxi � xiþ3Þ2. Deviations from thermal equilib-

rium and the Boltzmann distribution are important only in
the vicinity of the saddle point (in the region we call the
reaction volume) and therefore the probability to find a free

polymer chain in equilibrium around A is given by c ðAÞ ¼
Npe

��GðAÞZ�1 ¼ ce��GðAÞr�ð3N�3Þ
0 , where c ¼ Np=V is

the protein concentration in solution and the normalizing

partition function is given by Z ¼ R
dx1 . . .dx3Ne

��GðAÞ ¼
Vr3N�3

0 , with the intrinsic length scale r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
kBT=�

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2
=3

p
b0 proportional to the bond length b0 of the free

Gaussian polymer.
The total flux in Eq. (5) can now be written as

� ¼ Dcr20

� Y3N�1

i¼1

ri
r0

�
e��Gz

rzð1þ �R=�DÞ
: (6)

Note that a broader barrier (greater rz) results in a lower
flux � and a flatter saddle point (greater width of the pass
ri) results in a larger flux � across the saddle. Similarly to
earlier results derived through dimensionality arguments

[4], the term Dcr�ð3N�3Þ
0 ðrzÞ�1

Q
3N�1
i¼1 ri represents a flux

into an effective reaction volume of linear dimension

reff :¼ r�ð3N�3Þ
0 ðrzÞ�1

Q
3N�1
i¼1 ri. We therefore identify the

diffusion time across this reaction volume as �D ¼
ðDcreffÞ�1, and finally the flux takes the form

� ¼ Dreffc

1þDreffc�R
e��Gz

: (7)

This expression yields the limit � ¼ Dcreffe
��Gz

at low

concentration and saturates at � ¼ ��1
R e��Gz

at high con-
centration. The crossover between these two regimes oc-
curs at ~c :¼ ðDreff�RÞ�1.
In order to gain quantitative insight into the magnitude

of the frequency prefactor in Eq. (7) we require an estimate
for reff . To achieve this let us present a self-consistency
argument about the translational freedom of the polymer
center of mass. Consider the time required for the complete
rearrangement of internal degrees of freedom of a polymer
that is no longer in translational motion as a whole, that is,
effectively immobilized near the fibril end. In this case
c ðAÞ no longer depends on concentration and is simply
1=r3N�3

0 . The (3N � 1) terms of the product of the saddle-

point integrals will now be reduced by a factor of effective
volume for the chain center of mass translations, r3CM. In
this case, the characteristic rate of the free polymer re-
arrangement would be given by �0 ¼ Dreff=r

3
CM ¼ ��1,

where � ’ kBTN
2=
D� ¼ N2b20=3
D is the Rouse time

[11]. Equating �0 ¼ ��1 gives the estimate rCM � Rg=
,

where Rg ¼
ffiffiffiffiffiffiffiffiffi
N=6

p
b0 the radius of gyration of the polymer.

We can further note that the diffusion rate of the polymer,
��1
D ¼ Dcreff , is also expressed through the chain center of

mass motion: ��1
D ¼ DpcrCM, where Dp � D=N ’

10�10 m2 s�1 is the Rouse diffusion constant of the center
of mass [11]. This gives the relation rCM ¼ Nreff . The
frequency factor ��1

D can therefore be written as ��1
D �

DpcRg=
, i.e., a time of the order required for the coil

center of mass to diffuse into a volume given by the coil
size. The Kuhn length b0 � 1 nm in polypeptide chains
spans approximately 3 residues and, for example, for a

protein with 50 residues we obtain the value of reff ¼
0:3 �A and rCM � 5:3 �A.
This framework for diffusive attachment of proteins on

to amyloid fibrils enables insight to be gained into the
energy surface which directs the growth of such fibrils. In
general, the elongation step of amyloid growth is not
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directly accessible using standard assays, as protein aggre-
gation in solution involves nucleation and fragmentation of
fibrils simultaneously to their elongation [17]. Recently,
however, methods have emerged which allow the elonga-
tion step to be monitored independently of other processes
using biosensors [18–20]. In the present work we attached
preformed fragments of amyloid fibrils to the surface of a
quartz transducer [Fig. 2(a)(i)]; when the surface of the
sensor is exposed to a monomer solution [Fig. 2(a)(ii)], the
elongation of the fibrils [Fig. 2(a)(iii)] can be monitored
through the changes in the resonant frequency of the quartz
oscillator resulting from the nanogram mass changes con-
sequent upon new molecules adding on to the aggregates
[18,21]. The measurements highlight two different concen-
tration regimes: an initial linear concentration dependence,
and subsequently a saturation in the growth rate with
increasing monomer concentration. In our measurements
the growth rate vexp is given by the mass change with time

per unit area, which is directly proportional to the flux in
Eq. (7): vexp ¼ �2DMI�, where the surface density of

fibrils �2D � 1010 cm�2 in the case of insulin and �2D �
3� 109 cm�2 for � lactalbumin has been estimated from
AFM measurements [insets Figs. 2(b) and 2(c)]. A two-
parameter fit to Eq. (7) using the parameters ~c¼
ðDreff�RÞ�1 and vmax¼��1

R �2DMIe
�Gz

is shown in
Figs. 2(b) and 2(c). From these fitted values we can deter-
mine the values of the effective residency times for the two

proteins; in the case of insulin (51 residues), �R ¼
ðD~creffÞ�1 � 43 �s and for the longer sequence
� lactalbumin (121 residues), �R ¼ ðD~creffÞ�1 � 678 �s.
The implications of the landscape model are illustrated

in this Letter for the in vitro fibril assembly of two repre-
sentative proteins which are widely used in biophysical
studies of this phenomenon; insulin, in particular, being the
first protein for which this self-assembly process was ob-
served in vitro [22]. Characteristic features of the land-
scape model such as the existence of a linear growth rate at
low protein concentrations and a concentration-
independent growth rate at higher concentration, however,
are observed for a wider class of proteins and growth
conditions, including fibril assembly at physiological pH
[5].
We can test some of the further predictions of the

diffusive mechanism. As the reaction rate � is exponen-
tially dependent on the single barrier Gz and has only
weaker dependencies on the other system parameters, we
expect perturbations to the system state to result in growth
rates with varying monomer concentration which can to a
good approximation be scaled to collapse on to a master
curve. To illustrate this idea, we compare in Fig. 2(b)
insulin fibril growth under different conditions: in 10 mM
hydrochloric acid and in 20% acetic acid with 100 mM
NaCl. The growth rates for a given concentration of mono-
mer differ by approximately 1 order of magnitude, but the
curves can be scaled with a constant factor to collapse on to
a master curve (Fig. 2) as predicted by Eq. (7).
This scaling does not emerge from simple chemical

kinetics, and it is interesting to discuss briefly how the
landscape picture differs from simple chemical kinetics
characterized by instantaneous equilibration between re-
actants and the activated state. In order to account for the
less than linear concentration dependence of the growth
rates, the prevailing analysis of these types of reactions
postulates a two-step mechanism, where a monomer first
combines with a fibril end to form an intermediate in a
bimolecular reaction with a rate linearly proportional to the
monomer concentration; this intermediate then subse-
quently reorganizes in a concentration-independent step
to yield the product. As has been noted by some authors
[23], this type of process is formally analogous to the
Michealis-Menten model of enzymatic reactions [10], the
monomer taking the place of the substrate and the fibril end
that of an enzyme. If we write the rates for the two steps as
k1c and k2, the overall reaction rate will be given as the
reorganization rate k2 times the steady-state concentration
of the intermediate: v ¼ k2c½cþ ðk2 þ k�1Þ=k1��1, where
k�1 is a detachment rate. For low monomer concentrations,
c � ðk2 þ k�1Þ=k1, the rate is linear in concentration, v �
ck1, whereas for high concentrations the rate is constant
v � k2, leading to an overall sublinear concentration de-
pendence. It is clear, however, that for a true two-step
process analogous to a Michaelis-Menten mechanism in
general the parameters k1 and k2 depend on two different

FIG. 2. (a) Schema illustrating the determination of amyloid
growth rates through measurements of the mass increase of a fi-
bril population elongating on a quartz crystal transducer, as de-
scribed in the text. (b) Elongation rate of insulin fibrils as a func-
tion of the concentration of soluble insulin; rates under different
conditions [with 100 mM NaCl and 20% CH3COOH (squares)
and data from [18] without salt (triangles)] can be scaled to col-
lapse on to a master curve. A two-parameter fit to Eq. (7) gives
~c ¼ 4:5� 1023 m�3 (equivalent to 4:3 mg=ml for insulin with
molar mass MI ¼ 5800 Da), and vmax ¼ 264 ng cm�3 min�1.
(c) analogous experiment carried out with bovine � lactalbumin.
Here the fit to Eq. (7) yields ~c ¼ 1:8� 1022 m�3 (equivalent to
0:42 mg=ml for � lactalbumin with molar mass MI ¼14200
Da), and vmax ¼ 16:3 ng cm�2 min�1. The insets in (b) and (c)
show AFM micrographs of a sensor surface before growth from
which the seed density can be measured.
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barriersGz
1 andG

z
2 and therefore growth rates would not be

expected to follow a common master curve, at variance to
what is observed experimentally (Fig. 2).

The predictions from simple chemical kinetics about the
existence of two distinct energy barriers in the high and
low concentration regimes as opposed to a single one in the
diffusional process can also be directly probed. Biosensor
measurements, where the frequency signal is sensitive to
the elongation reaction, allow the enthalpic barrier to be
measured under both the low concentration and high con-
centration regime. Interestingly, these activation enthalpies
in both regimes are identical within experimental error
[Fig. 3(a) averages over 4 independent measurements per
concentration: 0:5 mg=ml: �Hz ¼ 129� 16 kJ=mol,
20 mg=ml: �Hz ¼ 115:6� 11:6 kJ=mol, Fig. 3(b) aver-
ages over 2 independent measurements per concentration:
0:2 mg=ml: �Hz ¼ 102:0� 4:6 kJ=mol, 10 mg=ml:
�Hz ¼ 112:3� 9:9 kJ=mol). This finding suggests that
in both cases the aggregation reaction is indeed limited
by the same barrier. Interestingly, in cases where a true
two-state Michaelis-Menten type process occurs, such as in
the context of enzymatic processes [10,24], the activation
enthalpies between the two steps can vary by a significant
fraction of their value [25,26].

The knowledge of the diffusional prefactor further al-
lows us to provide an estimate of the entropic contributions
to the free energy barrier. Using the numerical values for
the diffusion coefficient, the protein concentrations and
��1
D ¼ DpRgc=
 � 1600 s�1 (insulin) and ��1

D ¼
DpRgc=
 � 260 s�1 (� lactalbumin) with Rg � 1 nm

Dp � 10�10 m2 s�1, c � 5:2� 1022 m�3 (insulin) and

c � 8:6� 1021 m�3 (� lactalbumin), we obtain entropies
of activation T�S ¼ 115� 25 kJ=mol (insulin) and
T�S ¼ 87� 20 kJ=mol (� lactalbumin), i.e., of a similar
order of magnitude to the enthalpic term in the free en-
ergy—we therefore recover the entropy-enthalpy compen-
sation phenomena characteristic of protein folding [10].

In conclusion, we have computed frequency factors for a
landscape model of fibrillar protein self-assembly, and
tested experimentally the predictions of this model for

the in vitro assembly of two representative polypeptide
sequences. The availability of estimates for the frequency
factors governing amyloid growth kinetics allows the key
characteristics of the energy landscape underlying this
process to be defined from kinetic measurements.
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