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A broad and a narrow level of a quantum dot connected to two external leads may swap their respective

occupancies as a function of an external gate voltage. By mapping this problem onto a multiflavored

Coulomb gas we show that such population switching is not abrupt. However, trying to measure it by

adding a third electrostatically coupled lead may render this switching an abrupt first order quantum phase

transition. This is related to the interplay of the Mahan mechanism versus the Anderson orthogonality

catastrophe, in similitude to the Fermi edge singularity. A concrete setup for experimental observation of

this effect is also suggested.
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The phenomenon of population switching (PS) [1–3]
occurs in a discrete level quantum dot (QD)—e.g., a QD
with one broad level and one narrow level. Upon a con-
tinuous variation of a plunger gate voltage the occupation
numbers of the levels are inverted, cf. Fig. 1. This phe-
nomenon is relevant to a wide range of experimentally
observed effects, including the widely used technique of
charge sensing [4] and, possibly, the occurrence of a large
shot noise Fano factor through a QD [5], as well as corre-
lated lapses [6] of the transmission phase through a QD
[7,8]. One particularly intriguing question in this context is
whether or not (at zero temperature) PS is abrupt, and
hence constitutes a first order quantum phase transition
(QPT).

In the following we address this question in the context
of a two-level QD coupled to leads of spinless noninteract-
ing electrons. This is mapped onto a system of two single-
level QDs, each coupled to a single lead (cf. Fig. 2). We
formulate the problem in terms of a multiflavored Coulomb
gas (CG), perform a renormalization group (RG) analysis
of this 15 parameter problem, and show that its low tem-
perature behavior is akin to an antiferromagnetic Kondo
problem; hence, no QPT occurs. This is dramatically
changed when a third lead (e.g., a quantum point contact,
QPC, serving as a charge sensor) is electrostatically
coupled to one of the QDs. The model may then scale to
the ferromagnetic Kondo problem, and by tuning the
strength of the third lead coupling, one induces a QPT.

The problem at hand can be viewed within an even
broader context. The features of the Fermi edge singularity
are the result of the competition between the Anderson
orthogonality catastrophe and the Mahan exciton physics
[9]. The fact that the latter wins gives rise to the divergence
at the x-ray absorption edge. Such an interplay is present
here, too. Turning on the electrostatic coupling to the third
lead increases the weight of the orthogonality catastrophe.
The latter eventually wins, suppressing transitions between
charge configurations before and after PS takes place. This

implies a QPT between these two configurations. Our setup
then serves as a handy laboratory which allows us to
control and tune the relative strengths of two fundamental
effects in many-body physics.
The original system of spinless electrons, made of a two

(unequal) orbital level QD connected to two leads
[cf. Fig. 2(a)], is described by the Hamiltonian H ¼
~Hlead þ ~Hdot þ ~Hdot-lead. We assume the leads to be non-
interacting, and the dot-lead tunneling matrix elements ~Vi‘

(i ¼ 1, 2 and ‘ ¼ L, R for left, right) to be real and possess
left-right symmetry, j ~ViLj ¼ j ~ViRj (effects of asymmetry
are discussed later). We will consider the more intricate
case sgnð ~V1L

~V1R
~V2L

~V2RÞ ¼ �1 [7]. We now map the
original model onto a modified one consisting of two
single-level QDs, cf. Fig. 2(b). The Fermi operators c L

and c R of the new leads are made of symmetric and

antisymmetric combinations of the original ~c L and ~c R,
respectively. The Hamiltonian is H ¼ P

‘H‘ þHU, with
H‘ ¼ H‘;lead þH‘;dot þH‘;dot-lead, where H‘;lead describes

the Fermi liquid of the respective lead, H‘;dot ¼ "‘d
y
‘ d‘

(dy‘ is the creation operator at dot ‘), H‘;dot-lead ¼
V‘d

y
‘ c ‘ð0Þ þ H:c: with VL ¼ ffiffiffi

2
p j ~V1Lj and VR ¼ffiffiffi

2
p j ~V2Rj, and, finally, HU ¼ UdyLdLd

y
RdR. The dot-lead

coupling gives rise to level widths �‘ ¼ �jV‘j2�‘, where
�‘ are the local densities of states.

FIG. 1. Respective occupation of levels 1 and 2 (a) before and
(b) after population switching has taken place.

PRL 104, 226805 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
4 JUNE 2010

0031-9007=10=104(22)=226805(4) 226805-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.226805


Using standard techniques, we can rewrite the partition
function as that of a classical multiflavor one-dimensional
CG [10–13]. The imaginary time history of the system (a
circle of circumference 1=T, the inverse temperature) is
divided into intervals in which the system is in one of four
states spanning the filling configurations of the two dots:
� ¼ 00, 10, 01, and 11 (cf. Fig. 3). The state � has
dimensionless energy h�. These intervals are separated
by transition events, the CG particles. A transition from
configuration � to � (� � �) is associated with a fugacity
y�� ¼ y��, and a two-component vector charge ~e�� ¼
� ~e�� (the two components correspond to the charge re-

moved from the L and R leads, respectively, cf. Table I).

The partition function reads

Z¼ X1
N¼0

X
�i;�i

y�1�1
...y�N�N

Z 1=T

0

d�2N
�

...
Z �2��

0

d�1
�

e�Sðf�i;�igÞ;

(1)

where �i ¼ �iþ1, N þ 1 � 1, and � is a short-time cutoff.
The classical CG action is

Sðf�i; �igÞ ¼
XN

i<j¼1

~e�i�i
� ~e�j�j

VCð�j � �iÞ

þXN
i¼1

h�i

�iþ1 � �i
�

(2)

with VCð�� �0Þ ¼ lnf�T�= sin½�Tð�� �0Þ�g. Bare values
of the CG parameters are listed in Table I.
We can now write down a set of 15 RG equations for the

Coulomb-gas parameters (valid to second order in the
fugacities but otherwise exact; here ��� � j ~e��j2 and

��
�� � ��� þ ��� � ���) [10,11]:

dy��
d ln�

¼ 2� ���

2
y�� þX

�

y��y��e
ðh�þh�Þ=2�h� ; (3)

d���

d ln�
¼ �X

�

y2��e
h��h���

�� �X
�

y2��e
h��h���

��; (4)

dh�
d ln�

¼ h� �X
�

y2��e
h��h� þ 1

4

X
�;�

y2��e
h��h� : (5)

We now address the parameter regime in the vicinity of
population switching. This requires j"L � "Rj< j�L �
�Rj. Defining "0 ¼ ð"L þ "RÞ=2, we have, in the
Coulomb-blockade valley, j"0j, "0 þU � �L, �R. The
RG flow is then divided into three stages:
(i) ��1 � maxðj"0j; "0 þUÞ, all four filling configura-
tions take equal part in the RG flow;
(ii) minðj"0j; "0 þUÞ � ��1 � maxðj"0j; "0 þUÞ, the
higher energy configuration between 00 and 11 drops
out; (iii) ��1 � minðj"0j; "0 þUÞ, only configurations
10 and 01 survive. In this last stage we are left with a
CG of only a single type of transition—equivalent to the
single channel anisotropic Kondo model [10]. The main
effect of the first two stages of the flow is to establish the
10 Ð 01 transition (via virtual processes through the dou-
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R2

L

QPC

(d)

FIG. 2. The systems discussed: (a) the original model of a two-
level quantum dot; (b) an equivalent model of two electrostati-
cally coupled single-level QDs; (c) a third terminal (QPC)
added; (d) right level tunnel-coupled to two leads.

FIG. 3. Illustration of the parameters characterizing the CG
[Eqs. (1) and (2)]: h�¼11=� is the energy associated with the state
11; its bare value is ð"L þ "R þUÞ. The transition depicted
involves the fugacity y�¼10;�¼11 and the charge ~e�¼10;�¼11,

whose bare values are
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R�=�

p
and (0, 1), respectively (see

Table I). Dashed lines indicate couplings generated through RG
iterations, e.g., y10;01 (corresponding to �Jxy=2).

TABLE I. Parameters appearing in the CG expansion [Eqs. (1)
and (2)], corresponding to the system depicted in Fig. 2(b).

Fugacities Charges Energies

y00;10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L�=�

p
~e00;10 ¼ ð1; 0Þ h00 ¼ 0

y00;01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R�=�

p
~e00;01 ¼ ð0; 1Þ h10 ¼ "L�

y10;11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R�=�

p
~e10;11 ¼ ð0; 1Þ h01 ¼ "R�

y01;11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L�=�

p
~e01;11 ¼ ð1; 0Þ h10 ¼ ð"L þ "R þUÞ�

y10;01 ¼ 0 ~e10;01 ¼ ð�1; 1Þ
y00;11 ¼ 0 ~e00;11 ¼ ð1; 1Þ
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bly occupied and unoccupied states, 11 and 00), and to
renormalize the corresponding parameters.

The resulting Kondo model has the following couplings,
to leading order in �‘ (parameters refer to bare values)
[13]:

�Jz¼1��10;01

2
þ
�
�L

2�

�Q2�00;10
ðj"Lj�Þ

j"Lj �10
01;00

þQ2�01;11
ð½"LþU��Þ
"LþU

�01
10;11

�
þfL$R;10$01g

�
;

(6)

�Jxy ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
�L�R

p
�

�Q�00;10þ�00;01
ðj"0j�Þ

j"0j

þQ�10;11þ�01;11
ð½"0 þU��Þ

"0 þU

�
; (7)

Hz¼"L�"R��L

�
½P2�00;10

ðj"Lj�Þ�P2�01;11
ð½"LþU��Þ�

þ�R

�
½P2�00;01

ðj"Rj�Þ�P2�10;11
ð½"RþU��Þ�; (8)

where PaðxÞ ¼ �ð1� a=2Þ=x1�a=2, QaðxÞ ¼ ð1�
a=2ÞPaðxÞ. For the system discussed thus far (cf. Table I)
we find

�Jz ¼ �L

�

�
1

"L þU
þ 1

j"Lj
�
þ �R

�

�
1

"R þU
þ 1

j"Rj
�
; (9)

�Jxy ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
�L�R

p
�

�
1

"0 þU
þ 1

j"0j
�
; (10)

Hz ¼ "L � "R � �L

�
ln
"L þU

j"Lj þ �R

�
ln
"R þU

j"Rj ; (11)

in agreement with the poor man’s scaling of Refs. [8]. Hz

will change sign as the gate voltage is swept across the
Coulomb-blockade valley, provided that j"L � "Rj<
j�L � �Rj; hence the spin projection hSzi will also change
sign, implying a PS. Since Jxy and Jz are antiferromag-

netic, they flow to strong coupling, so the PS will be

continuous over the scale of the Kondo temperature, TK ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uð�Lþ�RÞ

p
� exp½�"0ðUþ"0Þ

2Uð�L��RÞ lnð
�L

�R
Þ�.

The problem becomes much more intriguing when
an electrostatically coupled third lead (e.g., a
QPC charge sensor) is introduced, cf. Fig. 2(c). The

sensor adds to the Hamiltonian a term HS ¼ HS
lead þ

US:c
y
S ð0Þc Sð0Þ:ðdyLdL � 1

2Þ, the Hamiltonian of a free

lead plus an interaction term. One may reemploy the
Coulomb-gas formalism, but now ~e�� consists of three

components [11,13]. Denoting the population of dot L in
state � by nL�, the third component of ~e�� is given by

ðnL� � nL�Þ	S=�, with 	S ¼ 2tan�1ð��SUS=2Þ being the
change in phase shift of the electronic wave functions of
the QPC caused by a change in the population of dot L, and
�S the corresponding local density of states. The resulting

RG equations [Eqs. (3)–(5)] and their general solution
[Eqs. (6)–(8)] are as before. Now, however, the bare values
are �00;01 ¼ �10;11 ¼ 1, �00;10 ¼ �01;11 ¼ 1þ ð	S=�Þ2,
and �00;10 ¼ �01;11 ¼ 2þ ð	S=�Þ2. At low energies we

are still left with an effective Kondo model. The main
effect of the QPC would be to reduce �Jz by ð	S=�Þ2=2,
through the first term on the right-hand side of Eq. (6). It
may then drive the system to the weak coupling (ferromag-
netic Kondo) regime, and render the PS an abrupt first
order QPT. For this to happen the QPC charge sensitivity

needs to not be too high; we require �SUS � fP‘�‘½ð"‘ þ
UÞ�1 þ j"‘j�1�g1=2 � 1. The transition at Jz ¼ �Jxy be-

tween the continuous and discontinuous PS regimes is of
the Kosterlitz-Thouless type.
Our analysis here can be put in a more general context.

Around the point where PS takes place we need to consider
only pseudospin up (10) and down (01) states. Let us first
ignore the QPC. Processes in which an electron (or a hole)
hops in and out of a level give rise to an effective repulsive
interaction between the charge of each level and the charge
at the end of the nearby lead, of the formP

‘U‘:c
y
‘ ð0Þc ‘ð0Þ:ðdy‘ d‘ � 1

2Þ, U‘ ¼ jV‘j2½ð"‘ þUÞ�1 þ
j"‘j�1�. These correspond [by Eq. (9)] to the usual
Kondo JzSzszð0Þ coupling. A process of the type 10 Ð
01 (pseudospin flip, Jxy process) contributes to the hybrid-

ization of these two configurations, hence (if relevant) to a
smearing of the PS. The aforementioned effective repul-
sion introduces two competing elements into this dynam-
ics. On the one hand, 10 Ð 01 involves a change in the
lead’s state and, hence, is suppressed by the Anderson
orthogonality catastrophe. On the other hand, an electron
settling in one of the levels has prepared itself a hole in the
lead into which it can hop (a Mahan exciton). This facil-
itates tunneling out and in (by reducing the Pauli block-
ade), thus enhancing hybridization of 10 Ð 01. The overall
scaling dimension is given by dxy ¼ 1� ð	L þ 	RÞ=�þ
ð	2

L þ 	2
RÞ=2�2, where 	‘ ¼ 2tan�1ð��‘U‘=2Þ is the

phase-shift change in lead ‘ as a result of the 10 Ð 01
transition. In this expression for dxy the linear (quadratic)

term in 	‘ denotes the contribution of the Mahan
(Anderson) physics [14]. Since 	‘ < �, dxy < 1 (relevant),

so PS is a continuous crossover. However, when a third
lead is added, the scaling dimension is increased by
ð	S=�Þ2=2, the extra orthogonality associated with the
QPC. This may make the Anderson effect dominant, and
the population switching abrupt.
As mentioned above, the QPC can be thought of as a

measuring device (detector of the population of one QD).
At the same time, it is the introduction of this QPC which
drives the population switching from a mere crossover to a
genuine QPT. How, then, could one differentiate between
having and not having a QPT? A solution can be achieved
by attaching an additional lead to, say, the right QD
[cf. Fig. 2(d)]. Our analysis remains unchanged, provided

VR is replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijVR1j2 þ jVR2j2

p
, where VR1ð2Þ is the
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tunneling amplitude to lead R1ð2Þ. Now, however, one could
measure the conductanceGR through the right level, which
will be related to the average population of the latter, nR,

by the Friedel sum rule: GR ¼ e2

h ð 2jVR1VR2j
jVR1j2þjVR2j2Þ2sin2ð�nRÞ.

Thus, in the regime of continuous switching, in addition to
the two usual Coulomb-blockade peaks (of width �R) one
will find a ‘‘correlation induced resonance’’ (CIR) [7,8] of
width UTK=j�R � �Lj [Fig. 4(a)]; as the electrostatic cou-
pling to the QPC increases, TK will decrease in a

Kosterlitz-Thouless fashion, lnTK � ðU�
S �USÞ�1=2, until

we reach the abrupt population switching regime at US 	
U�

S. From that point on, the CIR disappears [Fig. 4(b)].

The analysis presented here, while specifically tackling
the ubiquitous physics of population switching and charge
sensing, is close to earlier studies of QPTs involving two-
level systems [15], including Kondo models coupled to
Ohmic baths [12,16]. Here we have found that PS is
inherently not abrupt, but in attempting to measure it
with a third terminal (a QPC) one may induce a QPT.
The system at hand is an appealing laboratory to modify
and control at will such effects as Mahan exciton,
Anderson orthogonality catastrophe, and Fermi edge sin-
gularity [9].

There are several obvious extensions to our analysis.
The absence of left-right symmetry in the original model
[Fig. 2(a)] implies a finite interdot hopping tLR in the
equivalent model, Fig. 2(b) [8]. This simply expresses
the possible transition of an electron from one level to
the other through the leads, and will smear the PS, as first
noted in the last of Refs. [1]. Finite temperature will also
have a rounding effect. Thus, in the proposed experiment
one could try to follow the manner of decrease of the width
of the CIR as a function ofUS, before it disappears as soon

as TK < T. Finally, the spinful analogue of the model can
be shown to display a similar behavior in the first
Coulomb-blockade valley. All these issues will be elabo-
rated elsewhere [13].
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[14] H. E. Türeci et al., arXiv:0907.3854; A. Weichselbaum, M.
Goldstein, Y. Gefen, and J. von Delft (to be published).

[15] A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987).
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