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An exact solution is obtained for a model of itinerant electrons coupled to ice-rule variables on the

tetrahedron Husimi cactus, an analogue of the Bethe lattice of corner-sharing tetrahedra. It reveals a

quantum critical point with the emergence of non-Fermi-liquid behavior in melting of the ‘‘charge ice’’

insulator. The electronic structure is compared with the numerical results for the pyrochlore-lattice model

to elucidate the physics of electron systems interacting with the tetrahedron ice rule.
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The ice rule is a local constraint observed in a broad
range of systems in condensed matter physics. It imposes a
configurational constraint on two-state variables defined at
neighboring four lattice sites so that two out of four are in
the opposite state to the other two. The most well-known
material is water ice, in which the two states correspond to
the configuration of hydrogens [1,2]. An analogy was
drawn by Anderson in the cation ordering of Fe2þ and
Fe3þ in magnetite Fe3O4 [3]. More recently, a magnetic
analogue was found in several pyrochlore oxides, the so-
called spin ice, such as Ho2Ti2O7 [4] and Dy2Ti2O7 [5].

The ice rule enforces local correlations; however, it is
underconstraint and not enough to make the entire system
ordered. The ground-state manifold retains macroscopic
degeneracy, resulting in residual entropy [2,5]. Never-
theless, the ice-rule configuration is not completely disor-
dered but cooperative in nature: There is a spatial power-
law correlation in the two-state variables originating from a
hidden gauge structure [6]. Considerable progress on the
understanding of such cooperative aspects has been made
in the last decade through the study of spin ice [7].

In contrast to such ‘‘localized spin physics,’’ much less
is known for the role of the ice rule in itinerant systems. It
is intriguing to elucidate how the cooperative nature from
the ice-rule constraint affects the electronic and transport
properties. The issue will also be experimentally relevant
to a wide range of pyrochlore-based compounds, such as
mixed-valence compounds with a charge-ordering ten-
dency [8–10] and itinerant d-electron materials including
Ising-like rare-earth moments [11,12]. Only a few theo-
retical studies have been carried out so far [13,14].

In this Letter, we address this issue in one of the simplest
models which describe fermions interacting with ice-rule
variables, an extended Falicov-Kimball model. We obtain
an exact solution to this model on the Husimi cactus of
tetrahedra, i.e., an analogue of the Bethe lattice composed
of corner-sharing tetrahedra. We clarify the ground-state
phase diagram including a ‘‘charge ice’’ insulator in which
the fermions are localized in the ice-rule configuration.
The solution reveals that a non-Fermi-liquid behavior ap-

pears at a quantum critical point (QCP) where the charge
ice melts as the interaction decreases. By comparison with
the numerical results for the pyrochlore lattice, we show
that our Husimi cactus model provides a cornerstone of
itinerant ice-rule problems.
We start with the extended Falicov-Kimball model on

the pyrochlore lattice [Fig. 1(a)],
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where the first term describes the hopping of spinless
fermions c, the second term represents the on-site repul-
sion between spinless fermions and immobile particles f,
and the last term is the repulsion between immobile parti-

cles. Here, nci ¼ cyi ci, n
f
i ¼ 0 or 1 (c number), and the sum
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FIG. 1 (color online). A typical ice-rule configuration for (a) a
pyrochlore lattice and (b) a tetrahedron Husimi cactus (THC).

The sites with nfi ¼ 1 (0) are shown by filled (open) circles. An

example of a loop and one-dimensional chain connecting the

sites with nfi ¼ 1 is shown by bold orange lines. (c) An appar-

ently different ice-rule configuration obtained from (b) by inter-
changing the upper right and lower right branches. (d) A branch
of THC considered in the calculations of g in Eq. (3).
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hi; ji is taken over the nearest-neighbor sites. Hereafter, we
focus on the case in which the immobile particles satisfy
the ice rule (see Fig. 1(a)). This is achieved by settingP

in
f
i ¼ N=2 (N is the total number of sites) and V ! 1.

The partition function of the model is calculated by Z ¼
TrfTrc expð��H Þ, where Trf (Trc) is the trace over the

immobile-particle (spinless-fermion) degree of freedom,
and � ¼ 1=kBT is the inverse temperature with the
Boltzmann constant kB. For a given configuration of im-

mobile particle fnfi g, the Hamiltonian (1) is reduced to a
one-body problem given by

H ðfnfi gÞ ¼ �t
X

hi;ji
ðcyi cj þ H:c:Þ þX

i

Uin
c
i ; (2)

where Ui is the on-site potential determined by the con-

figuration fnfi g asUi ¼ Uðnfi � 1=2Þ. Then the trace Trf in
the partition function is replaced by the sum over fnfi g
which satisfies the ice-rule constraint: Z ¼ P

fnfi g2iceTrc�
exp½��H ðfnfi gÞ�. This is, in principle, feasible to calcu-
late because Trc is performed by a diagonalization of the
one-body N � N Hamiltonian (2), but in practice, it is
difficult for large system sizes because the sum within

the ice manifold increases exponentially �1:5N=2 [2].
A dramatic simplification is introduced by considering a

modified structure of the pyrochlore lattice, that is, a
Husimi cactus of tetrahedra [15]. It is an analogue of the
Bethe lattice composed of corner-sharing tetrahedra, as
shown in Fig. 1(b), which we call here the tetrahedron
Husimi cactus (THC). THC shares two important structural
features with the pyrochlore—the tetrahedral units and
their corner-sharing network. A difference is in the global
connection of tetrahedra: The pyrochlore lattice has loops
running across different tetrahedra [see Fig. 1(a)], but THC
does not have such global loops. Despite of this difference,
the THC model captures several essential features of the
pyrochlore, as we will see later.

The simplification by considering THC is twofold. First,
while the ice-rule configurations in THC are also macro-

scopically degenerate (¼ 6� 3N=3), they are topologically
equivalent because one can relabel the site numbers by
interchanging branches which spread from the same
tetrahedron [see Figs. 1(b) and 1(c)]. Consequently, all
the possible ice-rule configurations give an identical

Boltzmann weight, and therefore, the sum over fnfi g can
be suppressed in the calculations of any observable.

On top of that, the second crucial point is that for any
ice-rule configuration on THC we can obtain one-body
Green’s functions exactly by using recursion equations
similar to those often used in the Bethe lattice problems
[16–18]. To see this explicitly, let us consider the T ¼ 0

local retarded Green’s function at the site i, Gið"Þ �
thij½"�H ðfnfi gÞ þ i���1jii (t is included to make G di-
mensionless). Similarly, we define the Green’s function
gið"Þ for a branch given by terminating a half of the

tetrahedral network at the site i, as shown in Fig. 1(d). g0
is formally written by the expansion in terms of the hop-
ping:

g0 ¼ gð0Þ0 þ gð0Þ0 ðg1 þ g2 þ g3Þg0 � gð0Þ0 ½g1ðg2 þ g3Þ
þ g2ðg3 þ g1Þ þ g3ðg1 þ g2Þ�g0 þ � � � ; (3)

where gð0Þ0 ¼ tð"�U0Þ�1 is the atomic Green’s function.

Here, the second term corresponds to the processes where a
fermion hops from the site i ¼ 0 to one of the other three
sites in the same tetrahedron, j ¼ 1, 2, or 3, then propa-
gates within the branch belonging to the site j, and returns
to the original site i ¼ 0 [see Fig. 1(d)]. The next term
describes higher-order contributions, e.g., a hopping pro-
cess 0 ! 1 ! 2 ! 0with propagations within each branch
connected with the sites 1 and 2. The expansion (3) is
simplified and reduced to a set of recursion equations
owing to the self-similarity of THC under the ice rule: gi
depends not explicitly on i but only on the value of Ui, i.e.,
gi ¼ g� corresponding to Ui ¼ �U=2. The recursive
equations are given by

g�ð1� g�Þ þ 2g�ð1� g�Þ
1þ g�ð1� 2g�Þ

¼ 1

t

�
"�U

2

�
� 1

g�
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The full Green’s functions G� are obtained as

G�1� ¼ 2

g�
� 1

t

�
"�U

2

�
: (5)

Equations (4) and (5) give the exact solution to the local
Green’s functions of the extended Falicov-Kimball model

(1) in the ice-rule limit:
P

in
f
i ¼ N=2 and V ! 1. By

extending the above calculations, it is also possible to
obtain the nonlocal as well as the finite-T Green’s func-
tions. The whole procedure can be straightforwardly ap-
plied to a broader range of models with general ice-rule
type constraints on general cacti of a complete graph. Such
extensions will be discussed elsewhere.
Now let us discuss the ground-state properties derived

from the exact solution. Figure 2 shows the site-resolved
density of states (DOS) given by �� ¼ �ImG�=�t and
their summation � ¼ �þ þ ��. In Fig. 2(a), we show DOS

at U ¼ 0, which is given by the analytic form of �ð"Þ ¼
1
�Ref½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12t2 �ð"þ 2tÞ2p �=½16t2 �ð"þ 2tÞ2�gþ 1

2�ð"� 2tÞ.
This is composed of the delta-functional peak (flat bands)

at " ¼ 2t and the broad spectrum for j"þ 2tj< 2
ffiffiffi
3

p
t. In

the opposite limit of U 	 t also, a simple analytic form is
available: By approximating g� ’ �0 for " ’ �U=2 in

Eq. (4), we obtain ��ð"Þ ¼ 1
�Ref4t2 � ½"� ðU=2Þ�2g�1=2.

This is identical to DOS for one-dimensional (1D) tight-
binding chains centered at " ¼ �U=2. The coincidence
comes from the fact that THC under the ice-rule constraint
is broken up into 1D chains of the same potentialþU=2 or
�U=2, as schematically shown in Fig. 1(b). A typical
result for U 	 t is shown in Fig. 2(e) at U ¼ 100t.
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In both the limiting cases of U ¼ 0 and U 	 t, the
system is insulating at half filling of the spinless fermion,
nc � hnci i ¼ 1=2. However, the origins of the two insulat-
ing states are quite different. The insulating phase atU ¼ 0
is a simple band insulator, in which the broad spectrum is
fully occupied and the flat band is empty. On the other
hand, the large-U phase is an incompressible state with a
large gap �U originating from the repulsive interaction
between fermions and immobile particles. We call this
correlation-driven insulating state ‘‘charge ice,’’ in analogy
with the spin ice [4,5], since the mobile fermions are
localized in the ice-rule configuration which is composed

of the sites with nfi ¼ 0.
The question is how the system changes from the band

insulator to the ‘‘charge ice’’ as U increases. In Figs. 2(b)–
2(d), we show the change of DOS obtained in the inter-
mediate range ofU. When switching onU, while the broad
spectrum is almost unchanged, the flat bands are perturbed
to be broadened around " ¼ 2t, leading to a reduction of
the gap [Fig. 2(b)]. The gap decreases as U increases and
vanishes at U ’ 2t [Fig. 2(c)]. Further increase of U opens
a gap again [Fig. 2(d)], and increases it continuously.
Critical behavior around U ¼ 2t is shown in Fig. 3(a).
The plot suggests that the gap closes only at U ¼ Uc ¼ 2t.

The critical behaviors of DOS can be understood ana-
lytically from Eqs. (4) and (5). We can prove that the DOS
diverges at " ¼ "U ¼ tþ ðUc �UÞ=2: At " ¼ "U, we
obtain g�1þ ¼ �1� ðU�UcÞ=t, g�1� ¼ 1, Gþ ¼ �t=U,
and G� ¼ 1, resulting in �þð"UÞ ¼ 0 (except for U ¼
0) while ��ð"UÞ ! 1. With regard to the gap, by consid-
ering a small deviation from U ¼ Uc and evaluating g� at
" ’ "U, we find that the energy gap opens as �ðUÞ ’
8

27t2
jU�Ucj3 for both U >Uc and U <Uc. Therefore

the energy gap closes only at U ¼ Uc. This is identified
as QCP between the band insulator and the charge ice (see
the phase diagram in Fig. 4).
The critical behavior of the gap �ðUÞ / jU�Ucj3 is

peculiar in contrast to the usual linear behavior �ðUÞ /
jU�Ucj in the Mott transition [19]. Actually, QCP is
peculiar also in the sense that the self-energy exhibits an
anomalous power-law behavior. From Eqs. (4) and (5), we

can derive that the self-energy ��, defined by �� ¼
gð0Þ�1
� �G�1� , shows the following critical behavior:

Re��ð"Þ ¼ 2� C�j"��cj1=3sgnð"��cÞ; (6)

Im��ð"Þ ¼ �C�
ffiffiffi
3

p j"��cj1=3; (7)

where C� ¼ ð4=tÞ1=3, Cþ ¼ C�=2, and�c ¼ t is the criti-
cal chemical potential [Figs. 3(b) and 3(c)]. The anomalous

power law / j"��cj1=3 indicates that the system shows a
non-Fermi-liquid behavior at QCP. DOS also shows a

singular energy dependence, ��ð"Þ / j"��cj�1=3 at
U ¼ Uc, resulting in the anomalous T dependence of
thermodynamic quantities at QCP. For example, the spe-

cific heat is predicted to behave as / T2=3 at low T.
Collecting the results with varyingU, we summarize the

exact ground-state phase diagram in Fig. 4. There are two
metallic regions for 0< nc < 1=2 and 1=2< nc < 1,
which are separated by the two insulating regions at half
filling nc ¼ 1=2, i.e., the band insulator forU <Uc and the
charge ice for U >Uc. All of these four phases meet at
QCP at ðUc;�cÞ ¼ ð2t; tÞ.
As indicated by the bold curve crossing QCP in Fig. 4,

the divergence of �� at " ¼ "U is transferred from the
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FIG. 2 (color online). DOS for (a)–(e) THC and (f)–
(j) pyrochlore lattice at U=t ¼ 0, 1, 2, 3, and 100. The results
for the pyrochlore model are calculated for a 33 superlattice of
4� 83 lattice sites [21]. �þð"Þ [��ð"Þ] is shown by the bold red
(dotted blue) curves. In (a)–(d) and (f)–(i), the total DOS �ð"Þ is
plotted by thin black curves.
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upper-band bottom to the lower-band top [see Fig. 3(a)].
The divergence contains a bunch of extended states on the

sites with nfi ¼ 0. The extended states are fully occupied in
the charge ice state, while they are empty in the band
insulator. This fact leads us to define an ‘‘order parameter’’

to distinguish two insulating states, O� � hcy�c�i for

the corresponding extended-state operator c� ¼P
icið�1Þi= ffiffiffiffi

L
p

, where i represents the sequential site num-

ber on a chain composed of nfi ¼ 0 sites (L is the length).
O� changes from 0 for the band insulator to 1 for the
charge ice. The transfer of the extended states bears some
analogy to the ‘‘levitation scenario’’ proposed for the
quantum Hall systems [20]. This analogy suggests a dis-
crete change of the ‘‘transport nature’’ at QCP. Further
analysis will be discussed elsewhere.

Finally, we return to consider the original pyrochlore
model. As indicated in Fig. 2, we observe many similar
behaviors in DOS between THC and pyrochlore models
[21,22]: (i) DOS consists of the flat bands and dispersive
bands at U ¼ 0, (ii)U drives a quantum phase transition to
the charge ice insulator at half filling, (iii) the divergence of
DOS transfers through QCP, and (iv) DOS shows a one-
dimensional-like form for U 	 t. These are direct conse-
quences from the key features shared between THC and
pyrochlore, i.e., the corner-sharing network of tetrahedra
and the resulting macroscopic ice-rule degeneracy. Inter-
estingly enough, (iii) suggests a possibility that the tran-
sition in the pyrochlore case is also described by an order
parameter analogous to O�, accompanied by similar
anomalous critical behavior. We note that, in the weak U
region, THC is a band insulator, whereas the pyrochlore
model is metallic at half filling [Figs. 2(f)–2(h)]; however,
this difference is rather irrelevant since our focus is on the
strongly correlated physics related to the charge ice insu-
lator. The benefit from obtaining the exact solution exceeds
the minor dissimilarity. Thus, our THC solution captures
the common essential physics of the itinerant ice-rule sys-
tems. Further comparisons, including the effect of global
loops neglected in THC, will be reported separately [22].

In summary, we have exactly solved the extended
Falicov-Kimball model on the tetrahedron Husimi cactus
in the ice-rule limit. The solution reveals a quantum critical
point and associated non-Fermi-liquid behavior in quan-
tum melting of ‘‘charge ice’’ insulator. Furthermore, the
results capture many essential features of more realistic
lattices with corner-sharing tetrahedra, such as the pyro-
chlore lattice. Our exact solution provides a canonical
reference to the itinerant ice-rule physics, and will open
new avenues of research with wide applicability to
correlation-induced phenomena under strong frus-
tration.
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