Nature of the Mott Transition in Ca₂RuO₄

E. Gorelov, ¹ M. Karolak, ² T. O. Wehling, ² F. Lechermann, ² A. I. Lichtenstein, ² and E. Pavarini ¹ Institut für Festkörperforschung and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany ² I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, D-20355 Hamburg, Germany (Received 12 January 2010; published 1 June 2010)

We study the origin of the temperature-induced Mott transition in Ca_2RuO_4 . As a method we use the local-density approximation + dynamical mean-field theory. We show the following. (i) The Mott transition is driven by the change in structure from long to short **c**-axis layered perovskite (L- $Pbca \rightarrow S$ -Pbca); it occurs together with orbital order, which follows, rather than produces, the structural transition. (ii) In the metallic L-Pbca phase the orbital polarization is \sim 0. (iii) In the insulating S-Pbca phase the lower energy orbital, $\sim xy$, is full. (iv) The spin-flip and pair-hopping Coulomb terms reduce the effective masses in the metallic phase. Our results indicate that a similar scenario applies to $Ca_{2-x}Sr_xRuO_4$ ($x \le 0.2$). In the metallic $x \le 0.5$ structures electrons are progressively transferred to the xz/yz bands with increasing x; however, we find no orbital-selective Mott transition down to \sim 300 K.

DOI: 10.1103/PhysRevLett.104.226401

The layered perovskite Ca_2RuO_4 (Ru $4d^4$, $t_{2\sigma}^4e_g^0$) undergoes a paramagnetic metal-paramagnetic insulator transition (MIT) at $T_{\rm MIT} \sim 360$ K [1]. A similar insulator-tometal transition happens also by application of a modest $(\sim 0.5 \text{ GPa})$ pressure [2] and finally when Ca is partially substituted by Sr (Ca_{2-x}Sr_xRuO₄, $x \le 0.2$) [3,4]. The nature of these transitions, in particular across x = 0.2, has been debated for a decade [5–13]. While it is clear that a Mott-type mechanism makes the 2/3-filled t_{2g} bands insulating, two opposite scenarios, with different orbital occupations $n = (n_{xy}, n_{xz} + n_{yz})$ and polarizations $p \equiv$ $n_{xy} - (n_{xz} + n_{yz})/2$, have been suggested. In the first, only the xy band becomes metallic; i.e., the transition is orbital selective (OSMT) [5]; n and p jump from (2, 2) and 1 in the insulator to (1, 3) and -1/2 in the metal. In the second, there is a single Mott transition, assisted by the crystal-field splitting $\Delta = \epsilon_{xz/yz} - \epsilon_{xy} > 0$ [13], similar to the case of $3d^1$ perovskites [14]; p > 0 in all phases. To date the issue remains open. Recently, for x = 0.2 a novel (xy insulating, $n_{xy} = 1.5$ and p = 1/4) OSMT was inferred from angle-resolved photoemission (ARPES) experiments [7], but other ARPES data show three metallic

 Ca_2RuO_4 is made of RuO_2 layers built up of cornersharing RuO_6 octhahedra (space group Pbca [3,15]). This structure (Fig. 1) combines a rotation of the octahedra around the $\bf c$ axis with a tilt around the $\bf b$ axis. It is similar to that of the tetragonal unconventional superconductor Sr_2RuO_4 ; the corresponding pseudotetragonal axes $\bf x$, $\bf y$, and $\bf z$ are shown in Fig. 1. The structure of Ca_2RuO_4 is characterized by a long $\bf c$ axis (L-Pbca) above $T_S\sim 356$ K and by a short one (S-Pbca) below T_S . The L- and S-Pbca phases are also observed in $Ca_{2-x}Sr_xRuO_4$ for all $x\leq 0.2$, but T_S decreases with increasing x; for x>0.2 the system becomes tetragonal (for x<1.5: I41/acd, $\bf c$ -axis rotations only).

Because of the layered structure, the $\sim xz$, yz bandwidth, $W_{xz/yz}$, is about one-half of the $\sim xy$ bandwidth, W_{xy} . Because of the structural distortions, the t_{2g} manifold splits into nondegenerate crystal-field states. Many-body studies of 3-band Hubbard models show that a large difference in bandwidths, a crystal-field splitting Δ and a finite Coulomb exchange interaction can affect the nature of the Mott transition [5,13,16]. Simple models neglect, however, the actual effects of distortions on the electronic structure; such effects could be crucial [14] to the mechanism of the MIT. On the other hand, approximate treatments of the

many-body effects [6], or the neglect of the spin-flip and

pair-hopping contribution to the Coulomb exchange inter-

PACS numbers: 71.27.+a, 71.15.-m, 71.30.+h, 75.25.Dk

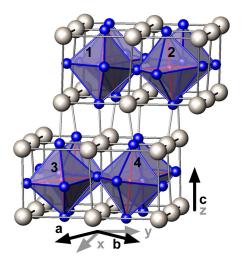


FIG. 1 (color online). Ca₂RuO₄ *L-Pbca* [3,15]. The primitive cell is orthorhombic with 4 formula units; $\mathbf{x} \sim (\mathbf{a} + \mathbf{b})/2$, $\mathbf{y} \sim (\mathbf{b} - \mathbf{a})/2$, $\mathbf{z} = \mathbf{c}$ are the pseudotetragonal axes. Ru sites i at \mathbf{T}_i (i = 2, 3, 4) are equivalent to site 1 at \mathbf{T}_1 , with operations $\mathbf{a} \rightarrow -\mathbf{a}$ (i = 2), $\mathbf{c} \rightarrow -\mathbf{c}$ (i = 3), $\mathbf{b} \rightarrow -\mathbf{b}$ (i = 4), and $\mathbf{T}_i \rightarrow \mathbf{T}_1$. In the *S-Pbca* structure the tilting angle is about twice as large, while the rotation angle is slightly smaller.

bands and no OSMT [8].

action, could also lead to wrong conclusions on the origin of the transition.

In this Letter we address the problem by means of the local-density approximation (LDA) + dynamical mean-field theory (DMFT) approach [17] with a continuous-time quantum Monte Carlo (QMC) solver [18]. This method allows us to treat realistically both the material-dependence and the many-body effects. We show that the Mott transition occurs because of the L- \rightarrow S-Pbca structural phase transition, which is also responsible for $\sim xy$ orbital order (OO). In the metallic phases we find, with increasing x, a progressive transfer of electrons from xy to xz/yz ($p \le 0$); down to ~ 300 K, we find, however, no orbital-selective Mott transition.

We use the *ab initio* downfolding approach based on the N-th order muffin-tin orbital (NMTO) method to construct from first-principles material-specific Wannier functions [14] which span the t_{2g} bands, and the corresponding, material-specific, three-band Hubbard model, with full local Coulomb interaction [19]

$$H = -\sum_{\substack{m,m',i,i',\sigma}} t_{mm'}^{i,i'} c_{im\sigma}^{\dagger} c_{i'm'\sigma} + U \sum_{im} n_{im\uparrow} n_{im\downarrow}$$

$$+ \sum_{\substack{i\sigma\sigma'\\m\neq m'}} (U - 2J - J\delta_{\sigma,\sigma'}) n_{im\sigma} n_{im'\sigma'}$$

$$- J \sum_{\substack{im\neq m'\\lim\neq m'}} [c_{im\uparrow}^{\dagger} (c_{im'\uparrow}^{\dagger} c_{im\downarrow} + c_{im\downarrow}^{\dagger} c_{im'\uparrow}) c_{im'\downarrow}].$$
 (1)

Here $c_{im\sigma}^{\dagger}$ creates an electron with spin σ in the Wannier state m at site i, and $n_{m\sigma} = c^{\dagger}_{im\sigma}c_{im\sigma}$. The ab initio parameters $t_{mm'}^{i,i'}$ (Table I) are the crystal-field splittings (i =i') and hopping integrals ($i \neq i'$). U and J are the direct and exchange screened Coulomb interaction. We use U =3.1 eV and J = 0.7 eV, in line with experimental [11,20,21] and theoretical [22] estimates. The last row in (1) describes the spin-flip and pair-hopping Coulomb terms. We solve (1) by DMFT [23] with a weak-coupling continuous-time QMC [18] solver. We retain the full selfenergy matrix in orbital space, $\sum_{m,m'}$ [14]. Our calculations yield the Green function matrix on the imaginary axis; we obtain the spectral matrix on the real axis by using a stochastic approach [24]. For limit cases (no spin-flip and pair-hopping terms) we perform comparative calculations with an alternative LDA + DMFT scheme, based on the projection of LDA Bloch states (obtained via the projectoraugmented wave method [25], Vienna Ab Initio Simulation Package [26]) to local orbitals [27] and a Hirsch-Fye QMC solver [28]. The parameters obtained with the two methods are very similar.

The nearest-neighbor hopping integrals $t_{xy,xy}^{i,i+\mathbf{x}}$, $t_{xz,xz}^{i,i+\mathbf{y}}$, $t_{xy,xy}^{i,i+\mathbf{y}}$ progressively decrease going from the ideal tetragonal $\mathrm{Sr_2RuO_4}$ (see Ref. [29]) to the L-Pbca and then the S-Pbca structure of $\mathrm{Ca_2RuO_4}$; correspondingly, the bandwidth decreases from 2.8 eV (L-Pbca) to 2.5 eV (S-Pbca). The cause is the increase in tilting of the $\mathrm{RuO_6}$ octahedra and deformation of the Ca cage, via Ru-O but also Ca-Ru

TABLE I. $Ca_{2-x}Sr_xRuO_4$ (x=0, 0.2): hopping integrals $t_{m,m'}^{ii'}$ /meV between sites i'=1 and $i\sim l\mathbf{x}+m\mathbf{y}+n\mathbf{z}$, and (x=0) crystal-field splitting $\Delta E_{\alpha,1}$ /meV $=\varepsilon_{\alpha}-\varepsilon_{1}$ $(\alpha=1, 2, 3)$ and orbitals at site 1. Orbitals and hopping integrals for sites 2, 3, and 4 can be obtained using symmetries (Fig. 1).

<i>L-Pbca</i> Ca ₂ RuO ₄								
lmn	$t_{yz,yz}$	$t_{yz,xz}$	$t_{yz,xy}$	$t_{xz,yz}$	$t_{xz,xz}$	$t_{xz,xy}$	$t_{xy,xy}$	
						-50		
010	242	-88	-35	75	10	26	230	
$\Delta E_{\alpha,1} = \begin{pmatrix} 0 \\ 103 \\ 121 \end{pmatrix}, \begin{pmatrix} 1\rangle \\ 2\rangle \\ 3\rangle \end{pmatrix} = \begin{pmatrix} 0.259 & 0.255 & 0.932 \\ 0.785 & -0.618 & -0.050 \\ 0.563 & 0.744 & -0.360 \end{pmatrix} \begin{pmatrix} yz\rangle \\ xz\rangle \\ xy\rangle $								

S-Pbca Ca ₂ RuO ₄							
lmn	$t_{yz,yz}$	$t_{yz,xz}$	$t_{yz,xy}$	$t_{xz,yz}$	$t_{xz,xz}$	$t_{xz,xy}$	$t_{xy,xy}$
100	11	-61	-25	38	123	-47	205
010	123	-61	-34	38	11	45	205

$$\Delta E_{\alpha,1} = \begin{pmatrix} 0 \\ 308 \\ 341 \end{pmatrix}, \begin{pmatrix} |1\rangle \\ |2\rangle \\ |3\rangle \end{pmatrix} = \begin{pmatrix} 0.246 & -0.009 & 0.969 \\ 0.420 & 0.903 & -0.098 \\ 0.874 & -0.430 & -0.227 \end{pmatrix} \begin{pmatrix} |yz\rangle \\ |xz\rangle \\ |xy\rangle \end{pmatrix}$$

$L ext{-}Pbca~ ext{Ca}_{1.8} ext{Sr}_{0.2} ext{RuO}_4$							
lmn	$t_{yz,yz}$	$t_{yz,xz}$	$t_{yz,xy}$	$t_{xz,yz}$	$t_{xz,xz}$	$t_{xz,xy}$	$t_{xy,xy}$
100	9	-90	-6	87	275	-46	242
010	275	-90	-31	87	9	24	242

and Ca-O covalency [14]; for similar reasons [14], the crystal-field splitting increases from ~100 meV (L-Pbca) to ~ 300 meV (S-Pbca). The crystal-field orbitals are displayed in Fig. 2. For the L-Pbca phase our LDA calculations yield $p_{LDA} \sim 0$. This may appear surprising, since at 2/3 filling due to the difference in bandwidth $(W_{xz/yz} \sim 1.5 \text{ eV} \text{ and } W_{xy} \sim 2.8 \text{ eV})$ one might expect p < 0. Such an effect, however, is canceled by the crystal-field splitting of about 100 meV: since the lowest energy state is $|1\rangle = 0.932|xy\rangle + 0.259|yz\rangle + 0.255|xz\rangle$ (see Fig. 2 and Table I), i.e., close to $|xy\rangle$, neglecting the difference in bandwidth, the crystal-field splitting favors p > 0. For the S-Pbca structure we find $W_{xz/yz} \sim 1.3$ eV and $W_{xy} \sim 2.5$ eV; i.e., the bandwidths decrease by about 0.2 eV. The crystal-field splitting is 300 meV, and the lowest energy crystal-field orbital, $|1\rangle$, is basically identical to $|xy\rangle$. The effect of the crystal-field is stronger than in the *L-Pbca* structure leading to $p_{LDA} \sim 0.37$.

The LDA + DMFT solution of Hamiltonian (1) yields the following results: for the *L-Pbca* structure we find a metallic solution down to very low temperatures; the orbital polarization is $p \sim 0$ at 390 K, i.e., close to the LDA value. The self-energy (Fig. 3) exhibits a narrow Fermiliquid regime with kinks [30]; a (lower) estimate of the effective masses of the quasiparticles, obtained from the slope of $\text{Im}\Sigma_{m,m}(i\omega_n)$ at the first Matsubara frequency, is $m^*/m \sim 5.0$ (xy) and $m^*/m \sim 4.2$ (xz, yz). We find similar

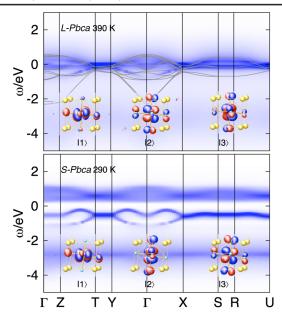


FIG. 2 (color online). The Mott transition: correlated bands for L- (top) and S-Pbca (bottom), LDA bands (L-Pbca, solid lines), and crystal-field orbitals for site 1 (see Table I). Positive (negative) lobes are light (dark). S-Pbca: $|1\rangle$ is full, $|2\rangle$ and $|3\rangle$ half-filled; the valence band has character $|1\rangle$.

behavior in Sr_2RuO_4 ; in Ca_2RuO_4 the mass enhancement is larger, because of the narrower bandwidth. Lowering the temperature down to 290 K turns the system into a ferromagnet with (almost) half-metallic behavior and $p \sim -0.05$ (the occupation of $|xy\rangle$ slightly decreases). The correlated bands for Ca_2RuO_4 are shown in Fig. 2. Along ΓX we find dispersive bands, while along XS the bands become almost flat.

For the S-Pbca structure the situation is completely different. We find a MIT between 390 and 290 K, in very good agreement with the experimental 360 K [1]. At 580 K the spectral function exhibits a pseudogap; $n_{xy} \sim 1.9$ and $n_{xz/yz} \sim 1.1$, and the polarization is already as large as $p \sim$ 0.8. At 290 K the gap is open and about 0.2 eV wide (see Fig. 3), while $p \sim 1$. The most occupied state is basically identical to the LDA lowest energy crystal-field orbital (Table I); the orbital order is close to xy ferro-order, with a small antiferro component. LDA + U calculations for the antiferromagnetic phase yield an OO consistent with our results for the paramagnetic phase [5,6]. Such orbital order in the S-Pbca phase and none in the L-Pbca phase is in line with the evolution, across the MIT, of the O 1s x-ray absorption (XAS) spectra [11,12] with increasing light incidence angle, θ . Our spectral functions are also consistent with photoemission [12,31]: the quasiparticle peak in the high-temperature phase, the Hubbard band at -0.5 eV, and the multiplets at -3 eV all correspond to features in the experimental spectra. The experimental peak centered at ~ -1.5 eV in [12,31], absent in our t_{2g} spectral functions, likely includes a sizable contribution of the O bands,

which start around those energies. The small gap (S-Pbca) is in excellent agreement with electrical resistivity [1,4] and optical conductivity [10] data.

In Fig. 3 we investigate the role played by the spin-flip and pair-hopping Coulomb terms by comparing results with and without those terms. We find that the effective masses decrease when the full Coulomb interaction is considered; this happens because the average U decreases and the degeneracy of the low energy d^3 and d^4 multiplets increases. In the insulating phase, such a difference in multiplet degeneracy appears very clearly as the enhancement of the $d^4 \rightarrow d^3$ peak around ~ -0.5 eV. The differences in orbital polarization are small.

Our results show that the Mott transition in Ca_2RuO_4 is driven by the $L \rightarrow S\text{-}Pbca$ structural transition at T_S and occurs simultaneously with orbital order. For the L-Pbca structure we find no OO for temperatures well below T_S ; OO follows, rather than produces, the change in structure [32]. These findings are in very good agreement with resonant x-rays scattering interference data [9], which show that the xy OO disappears close to the the MIT. They are also in line with the fact that a tiny pressure (\sim 0.5 GPa) is sufficient to make the system metallic at 290 K via the S- to L-Pbca transition [2].

Can this scenario be extended to $Ca_{2-x}Sr_xRuO_4$ ($x \le$ 0.2)? Let us examine the limit system x = 0.2, for which the L-Pbca phase persists down to 10 K. Neglecting the chemical effects of the Ca → Sr substitution [33] and disorder effects, for the 10 K structure we find crystal-field splittings of 81 and 110 meV, slightly (~0.1 eV) broader t_{2g} bands than for x = 0, and $p_{LDA} \sim -0.03$. The main difference with the L-Pbca structure of Ca₂RuO₄ is in the crystal-field orbitals (e.g., $\langle xy|1\rangle \sim \langle xy|2\rangle \sim 0.66$), and can be ascribed to the differences in octahedra tilting and rotation, and corresponding distortions of the cation cage. All of these effects stabilize the metallic solution. With LDA + DMFT (390–290 K) we find three metallic bands, in line with ARPES results from Ref. [8], with $m^*/m \sim 3.7$ (xz), 4.4 (yz), 5.6 (xy); $p \sim -0.14$. While the details slightly differ, depending on x [34], we conclude that for $x \le 0.2$ the temperature-induced Mott transition is mostly driven by the change in structure L- $Pbca \rightarrow S$ -Pbca. We find no OSMT down to 290 K.

What happens for x > 0.2? For the x = 0.5 structure [33] the crystal-field states are $|1\rangle = |xy\rangle$, and $|xz\rangle$, $|yz\rangle$, the crystal-field splitting is small, $p_{\rm LDA} = -0.02$, $W_{xy} \sim 2.7$ eV, $W_{xz/yz} \sim 1.6$ eV. LDA + DMFT at 390 K yields again a metallic solution with $m^*/m \sim 4.0$ (xz/yz) and 5.6 (xy), and three metallic bands, in agreement with ARPES [35]; $p \sim -0.15$ at 390–290 K.

Thus, outside the *S-Pbca* phase we always find a metal, in line with transport and optical conductivity data [3,4,36]; with increasing x, $n_{xz} + n_{yz}$ increases, in line with XAS [37]; $p \sim 0$ or slightly negative, approaching the p = -1/2 of the OSMT scenario [5]; we find, however, no OSMT down to 290 K.

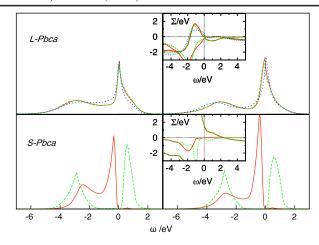


FIG. 3 (color online). Spectral matrix. Solid lines: $A_{1,1}$. Dashed lines: $A_{2,2}$ and $A_{3,3}$. Left: density-density terms only. Right: rotationally invariant Coulomb vertex. First row: L-Pbca, T = 390 K. Second row: S-Pbca, T = 290 K. Inset: Real (thick lines) and imaginary (thin lines) self-energies.

In conclusion, we have studied the origin of the metalinsulator transition in Ca₂RuO₄. We find that it is driven by the structural L- $\rightarrow S$ -Pbca transition. Two mechanisms compete; while a small $W_{xz/yz}/W_{xy}$ bandwidth ratio enhances the occupation of the xz/yz orbitals (p < 0) and could lead to an orbital-selective Mott transition with p =-1/2 [5], a large crystal-field splitting $\Delta_{3,1}$, with $|1\rangle \sim$ $|xy\rangle$ as the lowest energy state, favors xy orbital order and p > 0, as in Ref. [13]. In the x = 0 L-Pbca structure the two effects compensate: $\Delta_{3,1}/W_{xy} \sim 0.04$, $\langle 1|xy \rangle \sim 0.93$, and $W_{xz/yz}/W_{xy} \sim 0.54$. We find a metallic solution above and well below $T_{\rm MIT} \sim 360$ K, with orbital polarization $p\sim 0$ (no orbital order) at $T\sim 390$ K. At low temperatures the system becomes a ferromagnetic metal, in line with (moderate) pressure studies [2]. In the x = 0 S-Pbca structure $\Delta_{3,1}/W_{xy} \sim 0.13$, sizably larger than for the *L-Pbca* structure, $\langle 1|xy\rangle \sim 0.97$, and $W_{xz/yz}/W_{xy} \sim 0.52$; the system becomes insulating around $T_{\rm MIT}$ and $p \sim 1$ $(\sim xy \text{ ferro-orbital order})$, in excellent agreement with experiments; orbital order follows, rather than drives, the transition. Our results indicate that this scenario can be extended to $Ca_{2-x}Sr_xRuO_4$ for all $x \le 0.2$. Finally, for the metallic $x \le 0.5$ phases we find that, differently than in the crystal-field scenario [13], $p \sim 0$ or negative, slowly approaching the -1/2 of Ref. [5] with increasing x, but, down to ~300 K, we find no orbital-selective Mott transition.

Calculations were performed on the Jülich BlueGene/P. We thank A. Hendricks, T. Koethe, and H. Tjeng for sharing with us their data before publication.

- [1] C. S. Alexander et al., Phys. Rev. B 60, R8422 (1999).
- [2] F. Nakamura *et al.*, Phys. Rev. B **65**, 220402(R) (2002); P. Steffens *et al.*, Phys. Rev. B **72**, 094104 (2005).

- [3] O. Friedt et al., Phys. Rev. B 63, 174432 (2001).
- [4] S. Nakatsuji and Y. Maeno, Phys. Rev. Lett. 84, 2666 (2000); Phys. Rev. B 62, 6458 (2000).
- [5] V. I. Anisimov et al., Eur. Phys. J. B 25, 191 (2002).
- [6] Z. Fang, N. Nagaosa, and K. Terakura, Phys. Rev. B 69, 045116 (2004); New J. Phys. 7, 66 (2005).
- [7] M. Neupane et al., Phys. Rev. Lett. 103, 097001 (2009).
- [8] A. Shimoyamada *et al.*, Phys. Rev. Lett. **102**, 086401 (2009).
- [9] M. Kubota *et al.*, Phys. Rev. Lett. **95**, 026401 (2005); I. Zegkinoglou *et al.*, Phys. Rev. Lett. **95**, 136401 (2005).
- [10] A. V. Puchkov et al., Phys. Rev. Lett. 81, 2747 (1998).
- [11] T. Mizokawa et al., Phys. Rev. B 69, 132410 (2004).
- [12] T. Mizokawa et al., Phys. Rev. Lett. 87, 077202 (2001).
- [13] A. Liebsch and H. Ishida, Phys. Rev. Lett. 98, 216403 (2007).
- [14] E. Pavarini *et al.*, Phys. Rev. Lett. **92**, 176403 (2004); E. Pavarini, A. Yamasaki, J. Nuss, and O. K. Andersen, New J. Phys. **7**, 188 (2005).
- [15] M. Braden et al., Phys. Rev. B 58, 847 (1998).
- [16] P. Werner, E. Gull, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 101, 166405 (2008); P. Werner, E. Gull, and A. J. Millis, Phys. Rev. B 79, 115119 (2009); L. de Medici et al., Phys. Rev. Lett. 102, 126401 (2009).
- [17] V. I. Anisimov *et al.*, J. Phys. Condens. Matter 9, 7359 (1997); A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884 (1998).
- [18] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev. B 72, 035122 (2005).
- [19] J. Kanamori, Prog. Theor. Phys. **30**, 275 (1963).
- [20] T. Yokoya et al., Phys. Rev. B 53, 8151 (1996).
- [21] J. H. Jung et al., Phys. Rev. Lett. 91, 056403 (2003).
- [22] Z. V. Pchelkina et al., Phys. Rev. B 75, 035122 (2007).
- [23] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
- [24] A. S. Mishchenko, N. V. Prokof'ev, A. Sakamoto, and B. V. Svistunov, Phys. Rev. B **62**, 6317 (2000).
- [25] P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).
- [26] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
- [27] B. Amadon et al., Phys. Rev. B 77, 205112 (2008).
- [28] J.E. Hirsch and R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986).
- [29] E. Pavarini and I. I. Mazin, Phys. Rev. B 74, 035115 (2006).
- [30] K. Byczuk et al., Nature Phys. 3, 168 (2007).
- [31] A. Hendricks, T. Koethe, and H. Tjeng (unpublished).
- [32] E. Pavarini, E. Koch, and A. I. Lichtenstein, Phys. Rev. Lett. **101**, 266405 (2008).
- [33] The effect of the full substitution Ca \rightarrow Sr is the following: for x = 0.2 both crystal-field splitting (76 and 147 meV) and t_{2g} bandwidth increase slightly, $\langle 1|xy\rangle \sim 0.89$, $p_{\text{LDA}} \sim 0.16$. For x = 0.5 the crystal-field splitting increases to ~ 80 meV, with $|1\rangle = |xy\rangle$, and $p_{\text{LDA}} = 0.25$.
- [34] For x = 0.1 LDA + DMFT (projection scheme) yields a metal for L-Pbca ($p \sim 0.03$ at 580 K) and a deep pseudogap for S-Pbca ($p \sim 0.85$ at 390 K). For x = 0.15 (L-Pbca) we find a metal at 390 K with $p \sim -0.07$.
- [35] S.-C. Wang et al., Phys. Rev. Lett. 93, 177007 (2004).
- [36] J. S. Lee et al., Phys. Rev. Lett. 89, 257402 (2002).
- [37] H-J. Noh et al., Phys. Rev. B 72, 052411 (2005).