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Association EURATOM-Confédération Suisse, CH-1015 Lausanne, Switzerland
(Received 23 March 2010; published 2 June 2010)

Plasma turbulence in a linear device is explored for the first time with three-dimensional global two-

fluid simulations, focusing on the plasma parameters of the Large Plasma Device. Three instabilities are

present in the simulations: the Kelvin-Helmholtz instability, a sheath-driven instability, and a resistive

drift wave instability. The Kelvin-Helmholtz mode is shown to dominate the transport of plasma across the

magnetic field. Simple scaling laws are obtained for the plasma profiles.
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Linear plasma devices (e.g., [1–6]) are of widespread
interest to the plasma physics community because they
allow the exploration of basic plasma phenomena without
the complexities of magnetic curvature and shear. Of par-
ticular interest in this work, the Large Plasma Device
(LAPD) experiment [1] creates a linear plasma approxi-
mately 18 m long and 30 cm in radius with straight
magnetic field lines that terminate on the end walls.
Among its many uses, this experiment has been applied
to the study of turbulence and transport [7–11] due to
modes such as the Kelvin-Helmholz (KH) instability and
drift waves. These modes are of high interest because they
are ubiquitous in magnetized plasmas, and drift waves, in
particular, are believed to play a central role in the edge
region of fusion devices. The latter topic is of great im-
portance to the fusion community because edge turbulence
largely governs the overall fusion performance of toka-
maks and similar machines.

We present here global 3D two-fluid simulations of
turbulence in a linear device with LAPD-like plasma pa-
rameters and Bohm sheath boundary conditions in the
parallel direction. Spatially localized source terms are
added to the density and temperature equations that mimic
the top-hat-like shape of the source region in the LAPD
experiments. Since the simulations evolve the full profiles
of the various quantities with no separation made between
‘‘perturbations’’ and ‘‘equilibrium,’’ they can explore the
self-consistent evolution and structure of the plasma pro-
files in the presence of (1) the input of plasma and heat
from the sources, (2) the cross-field transport produced by
plasma instabilities (drift waves, for example), and (3) par-
allel losses at the sheaths where the magnetic field lines
terminate on the end walls. Our simulation results are new
and unexpected: we find that drift wave modes, although
present, are not the main source of heat and particle cross-
field transport in the device, nor are sheath-driven insta-
bilities [12], which arise in the system from the sheath
(Bohm) boundary conditions in the parallel direction [13].
Rather, the main agent of transport is the KH instability.
This is a fully global mode, driven by shear in the equilib-

rium electric potential arising from the sheath boundary

conditions [13]: e� ’ �Te, where� ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=ð2�meÞ

p ’
3. The nonlinear evolution of the KHmode produces large-
scale eddies that are the main source of cross-field profile
relaxation.
For our study we use the electrostatic Braginskii equa-

tions [14] with Ti � Te and � � 1:
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where pe ¼ nTe, ½a; b� ¼ @xa@yb� @ya@xb, df=dt ¼
@f=@t� ðc=BÞ½�; f�, jk ¼ enðVki � VkeÞ, �ci ¼
eB=ðmicÞ. The z is the coordinate parallel to B. We solve
Eqs. (1)–(4) on a field-aligned grid using a finite difference
scheme with Runge-Kutta time stepping and small numeri-
cal diffusion terms. The computational domain has a rect-
angular shape spanning ð�L=2; L=2Þ, L ¼ 100�s0 in the
perpendicular directions and ð�Lz=2; Lz=2Þ in the parallel
direction with nx ¼ ny ¼ 1024, nz ¼ 64. We use profiles

for the density and temperature sources Sn, ST that are
similar to the top-hat-like source profiles in LAPD: Sn;T ¼
S0n;Tf1� tanh½ðr� rsÞ=Ls�g=2 where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

. We

consider the nominal values for a helium LAPD plasma:
Lz ’ 18 m, �ci � 960 kHz, R ’ 0:5 m (the approximate
radius of the LAPD plasma chamber), rs ’ 28 cm, n0 �
2� 1012 cm�3, Te0 � 6 eV, cs0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p � 1:2�
106 cm=s, �s0 ¼ cs0=�ci � 1:4 cm, cs0=R� 2:4 MHz.
The parameters used in the simulations are S0n ¼
0:03n0cs0=R, S0T ¼ 0:03Te0cs0=R, Ls ¼ 0:5�s0,
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rs ¼ 20�s0, mi=me ¼ 400, � ¼ 3, R=�s0 ¼ 40, � ¼
e2n0R=ðmics0�kÞ ¼ 0:03, Lz ¼ 36R. In the figures we

normalize n to n0, Te to Te0, � to Te0=e, perpendicular
lengths to �s0, parallel lengths to R, and time to R=cs0. In
the perpendicular directions, we make the computational
domain large enough (L ¼ 100�s0 � 1:4 m) so that essen-
tially no plasma reaches the walls and thus the transverse
boundary conditions have no impact on the simulations.
This simplifies the simulations but is different from the
experiments, which have a somewhat smaller circular cross
section (�1 m diameter). Another simplification concerns
the sources: in the simulations the sources are uniform in
the parallel direction, and standard Bohm boundary con-
ditions Vki¼�cs, Vke ¼ �cs expð�� e�=TeÞ are ap-

plied at the end walls z¼�Lz=2. In the LAPD experi-
ments, however, the situation is more complicated. Ener-
getic electrons are injected by an anode-cathode arrange-
ment at one end [1], and the potential of the anode and
cathode can be biased relative to the walls of the vacuum
chamber. Data can be taken during the active period of the
source or in the afterglow phase, in which the temperature
falls rapidly as the plasma is lost in the parallel direction.
More research is needed to determine how the boundary
conditions of the simulations and operating configuration
of the experiments can best be matched. For this reason,
our results should be regarded as only the first step toward
modeling turbulence in the LAPD.

Figure 1 (left-hand panels) shows typical cuts of �, Te,
and n perpendicular to B through the center (z ¼ 0) of a 3D
simulation. The corresponding long-time averages, also at
z ¼ 0, are shown in Fig. 2 (solid lines). The time averages
of � and Te satisfy e� ’ �Te as noted earlier. The density
and temperature equations are sufficiently similar so that
the normalized density and temperature profiles are nearly
the same: Te / n, ~Te=Te � ~n=n. Aside from the fluctua-

tions, the profiles of �, Te and n are approximately con-
stant in the parallel direction, as can be seen from the
parallel slices through y ¼ 0 plotted in Fig. 3.
The turbulent fluctuations in these figures stem from

three main instabilities. The largest perpendicular struc-
tures in Fig. 1 correspond to the most unstable KH modes
in the system. These are global modes with a radial extent
comparable to L0, the radial gradient scale length of �,
poloidal wave numbers k�L0 � 1, and kk ’ 0. The shorter
scale activity in the plots is produced by drift waves and, of
lesser importance at these parameters, sheath modes. In
contrast to the KH and sheath modes, drift waves require
finite kk to be unstable. The peak drift wave linear growth

rate in our system is �’0:085ð1þ1:71	Þcs=Ln, 	 ¼
Ln=LT , for kk ’0:24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ðcsLpÞ

q
and ky�s’0:57. The most

unstable parallel wavelengths for typical LAPD parameters
are comparable to the length of the machine, kk � 2�=Lz.

The instantaneous profiles of the density, temperature,
and electric potential are typically steeper, by about a
factor of 2, than the smooth, Gaussian-like time-averaged
profiles shown in Fig. 2. The difference between the two is
caused by the global nature of the KH fluctuations, which
are continually excited in the steep gradient region and
cause an order-unity flattening of the local gradients.
Figure 4 (left-hand panel) shows a plot of L0, where
1=L0 ¼ maxðdr�=�Þ, taken from a cut along y ¼ 0 of
the instantaneous � profile (solid lower line, L0 � 3�s0)
compared to that computed from the time-averaged profile

FIG. 1 (color online). Plots of � (top), Te (center), and n
(bottom) perpendicular to B in 3D (left) and 2D (right) simula-
tions.

FIG. 2 (color online). Cuts of the long-time averages of �
(left), Te (center), and n (right) in 3D (black solid lines) and 2D
(red dashed lines) simulations.

FIG. 3 (color online). Plots of � (top), Te (center), and n
(bottom) parallel to B in 3D simulations.
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(upper dashed line, L0 � 5:5�s0). As shown in Fig. 4
(right-hand panel), in contrast to the rather broad time-
averaged profiles, the instantaneous profiles retain an ap-
proximate top-hat-like or hyperbolic-tangent shape of the
form � ¼ �maxf1� tanh½ðr� rsÞ=L0�g=2 with L0 � 3�s0

and a radial extent similar to that of the sources, r� rs.
Similar expressions apply to n and Te with Ln � LT � L0.
Tests show L0 is not dependent on the much steeper source
profiles (Ls ¼ 0:5�s0) but is rather determined by the
strength of the cross-field transport (discussed below).

Consistent with the simulations, the numerical linear
stability analysis of such hyperbolic-tangent profiles pre-
dicts a band of unstable KH modes centered on k�L0 ’ 1,
or poloidal mode number m ¼ rs=L0 � 7. This prediction
is also consistent with a simple slab KH analysis of such
profiles (the Bickley jet) [15], albeit with growth rates that
are reduced by sheath effects below the maximum slab
values � ’ 0:1ðc=BÞ�max=L

2
0. In contrast to this good

agreement, the full numerical stability analysis of the
more gradual, Gaussian-like time-averaged profiles shown
in Fig. 2 indicates they are linearly stable to all kk ¼ 0
modes: tests show the KH mode is stabilized by sheath ef-
fects, while the sheath-driven mode is stabilized by veloc-
ity shear. This is in contradiction to the presence of the
unstable kk ’ 0 fluctuations in the simulations and under-

scores that these fluctuations are generated by the steeper
instantaneous profiles rather than the long-time averages.

Turning to the issue of turbulent transport, our study
indicates that the KH modes, rather than drift waves or
sheath modes, provide the dominant cross-field transport
channel in the simulations. This conclusion stems from
several tests. First, when the KH drive is eliminated from
the simulations, the profiles dramatically steepen; see
Fig. 5, right-hand panel. The KH drive arises from the
convective term / ½�;r2

?�� on the left-hand side of vor-

ticity Eq. (2), and has been eliminated in the simulation by
the replacement ½�;r2

?�� ! ½h�i�;r2
?��, where h�i�

denotes an average over the polar angle �. Similar results
are obtained if the ½�;r2

?�� term is completely dropped

from the simulation. The extreme steepening of the profiles
following the suppression of the KHmode suggests that the

cross-field transport arising from drift wave and sheath
modes is quite weak.
Another way to assess the importance of the kk � 0 drift

wave modes is to eliminate them from the simulations
while preserving the kk ¼ 0 KH and sheath modes. This

can be done by integrating the 3D equations along the
parallel direction to obtain a 2D system in which only
the kk ¼ 0 structures survive [16]:

dn
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¼��
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R
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This 2D reduction is only approximate: in the 3D simula-
tions, �, Te, and n drop by about 20% in the parallel
direction from the midplane to the sheath edge, and to
obtain a 2D model it is necessary to neglect such variations
as well as various other small terms. Nevertheless, semi-
quantitative agreement between the two models is ob-
tained: Fig. 1 (lower panels) shows typical plots of �,
Te, and n in the 2D model. The differences between the
fluctuations in the 2D and 3D plots arise mainly from the
presence of drift waves in the latter, which lead to a
diffusive spreading of the KH vortices. The drift wave
modes, however, do not substantially relax either the
long-time average profiles [see Fig. 2, dashed lines, for
the 2D case] or the steeper peak gradients of the instanta-
neous profiles (not shown). The similarity of the 2D and 3D
profiles provides further evidence that the transport asso-
ciated with drift waves in 3D is secondary.
It is possible obtain simple scaling laws for the peak

values of the profiles �max, Te;max, nmax, as well as the

gradient scale length L0. Since L0 < rs, the height of the Te

and n profiles may be estimated by balancing the source
terms ST and Sn with the parallel loss terms (proportional
to 1=Lz). To a first approximation (valid to roughly the
30% level), the exponential factors in the latter may be
replaced by unity given e���Te. In the case of Te

this balance yields 2�Tecs=ð3RÞ � ST or Te;max �
m1=3

i ½3RST=ð2�Þ�2=3. This estimate, denoted by Te;an, is

plotted versus the measured values in the simulations in
Fig. 6(a), showing reasonably good agreement (Te;max ’
0:6Te;an). Given Te;max, the peak value � is determined by

e�max ’ �Te;max. A similar result holds for nmax.

Beyond the source region the profiles decay in the radial
direction over the scale length L0, which is determined by
the strength of the cross-field transport due to the KH
modes. As noted earlier, these global modes have radial
envelopes comparable to L0 and k�L0 � 1 [see Fig. 6(b)]
and in the nonlinear stage produce large vortices that

FIG. 4 (color online). Left-hand panel: The steepest � profile
scale length obtained from a cut of the instantaneous � profiles
(lower solid line) and the same obtained from the time-averaged
profile (upper dashed line). Right-hand panel: Long-time aver-
age (dashed line) and instantaneous (solid line) � profile.
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effectively mix the plasma inside and outside the steep
gradient region. As shown in Fig. 6(c) this large-scale
mixing produces order-unity rms temperature, density,
and potential fluctuations in the steep gradient region:
~Te � c0Te;max, ~n� c0nmax, ~�� c0�max � c0�Te;max,

where c0 � 0:3. The � fluctuations are approximately
consistent not only with e���Te, but are also what
one would expect from the nonlinear KH instability: bal-
ancing the two main terms in the vorticity equation
@tr2

?�� ðc=BÞ½�;r2
?�� with @x � @y � 1=L0 yields

�� ðc=BÞ ~�=L2
0. With the slab KH mode growth rate dis-

cussed earlier, �� 0:1ðc=BÞ�max=L
2
0, this reduces to

~��
0:1�max.

Given the strength of the KH fluctuations, the profile
scale length L0 may be estimated from the radial transport
equation for Te. Averaging Eq. (7) over t and �, one obtains

1

r

@ðr�TÞ
@r

¼ � 2�Tecs
3R

þ ST; �T ¼ h ~Te
~Vri�;t: (8)

Just outside the source region where ST ¼ 0 and @r�T �
��T=L0, this yields �T=L0 � 2�Tecs=ð3RÞ, or esti-

mating �T � k�ðc=BÞ ~� ~Te � c20�s�csTe;max=L0: L0 ¼
0:37

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��sR=�

p
. Figure 6(d) shows a plot of this result

(normalized by �s0 and denoted L0;an) versus the measured

values, demonstrating good agreement.
Surprisingly, the parametric dependence of �T due to

KH modes is the same as what one would expect for drift
waves. Estimating � ~Te � ~VrTe;max=L0 and [17] @r ~Te �
kr ~Te � Te;max=L0 with kr �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k�=L0

p
, k� � 1=�s, ��

0:1cs=L0, one obtains �T � ~Vr
~T � 0:1cs�sTe;max=L0 as

above. It is therefore not clear whether there is any pa-
rameter regime in which drift wave transport can dominate
the plasma.

Most of the data relating to the KH instability in LAPD
has been obtained by externally biasing the plasma relative
to the chamber wall [10,11]—an effect not included in this
work. When this biasing is weak or absent, in agreement
with the simulations presented here, the scale lengths of the
various profiles become comparable to each other. It has
been speculated [11] that the transport in this weak shear
case is due to either a combination of KH and drift wave
modes or to drift waves alone. Our findings, on the other
hand, suggest that the drift wave component of the trans-
port is secondary. Strong KH mode activity has also been

identified in the Mirabelle experiment [3] when it is run
with a top-hat-like source profile. As noted earlier, how-
ever, the parallel boundary conditions and source mecha-
nisms in the simulations are much simpler than those in the
experiments, and more work is needed to carry out detailed
comparisons to the experiments.
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FIG. 5 (color online). The Te profile before (left) and after
(right) the KH drive is turned off in a 3D simulation.

FIG. 6 (color online). (a) Te;max vs Te;an, the line denotes
Te;max ¼ 0:6Te;an. (b) L0 vs measured values of 1=k�, the line

denotes L0 ¼ 1:1=k�. (c) ~Te vs Te;max (crosses), ~n vs nmax

(circles), ~�=3 vs �max=3 (squares), the black line denotes ~Te ¼
0:32Te;max and ~n ¼ 0:32nmax, the red line denotes ~� ¼
0:22�max. (d) L0;an vs simulation values, the line denotes L0;an ¼
3:6L0.
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