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We study dynamical properties of an ensemble of noninteracting particles in a time-dependent
elliptical-like billiard. It was recently shown [Phys. Rev. Lett. 100, 014103 (2008)] that for the non-
dissipative dynamics, the particle experiences unlimited energy growth. Here we show that inelastic
collisions suppress Fermi acceleration in a driven elliptical-like billiard. This suppression is yet another
indication that Fermi acceleration is not a structurally stable phenomenon.
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Fermi acceleration (FA) is a phenomenon that occurs
when a classical particle acquires unlimited energy upon
collisions with a heavy and moving wall. The original idea
is due to Fermi [1] who assumed that the enormous energy
of the cosmic particles comes from interactions with mov-
ing magnetic clouds. After that many different 1D Fermi
accelerator models were studied [2-5]. Basically they are
composed of a classical particle which experiences colli-
sions with a moving wall. A source of returning for a next
collision can be a fixed wall [3,4], a gravitational field [5],
or both [6]. A simple generalization to 2D is to consider the
dynamics of the particle inside a billiard domain that,
depending on the shape of the boundary, demonstrates
regular [7], mixed [8], or fully chaotic dynamics [9].
Applications of billiards to physical problems include
superconducting [10] and confinement of electrons in
semiconductors by electric potentials [11,12], ultracold
atoms trapped in a laser potential [13—16], mesoscopic
quantum dots [17], reflection of light from mirrors [18],
waveguides [19,20], and microwave billiards [21,22].

If the boundary is time dependent, the Loskutov-
Ryabov-Akinshin (LRA) conjecture [23] claims that cha-
otic dynamics for a billiard with the static boundary is a
sufficient condition to produce FA if a time perturbation of
the boundary is introduced. This conjecture was confirmed
in many models [24-26]. Recently, however, [27] a specific
perturbation in the boundary of an integrable elliptical
billiard led to the observation of a tunable FA. The result
discussed in [27] was a break of two paradigms: (i) it was
expected [28] that the elliptical billiard, which is integrable
for static boundary and therefore demonstrates the most
regular dynamics, does not exhibit FA; and (ii) since the
static version of the elliptical billiard does not have chaotic
dynamics, then the LRA conjecture [23] should be
extended.

In this Letter we show that the mechanism which pro-
duces FA in the time-dependent elliptical-like billiard can
be broken by nonelastic collisions. Since the destruction is
observed for very small dissipation, one can conjecture that
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FA is not a structurally stable phenomenon. We consider
the dynamics of an ensemble of noninteracting particles in
a time-dependent elliptical-like billiard. Our results show
that initial conditions chosen along the separatrix curve of
the billiard with a static boundary lead the particle to
exhibit FA. Thus the LRA conjecture can be extended to
the existence of a heteroclinic orbit in the phase space
instead of the existence of a set with chaotic dynamics.
The mechanism which produces FA, as discussed in [27], is
the successive crossings by the particle of a neighborhood
of a separatrix curve in the static case, which under time
perturbation to the boundary turns into a stochastic layer.
Such crossings change the dynamics of the particle from
rotation to libration (or vice versa) and causes the Kinetic
energy of the particle to fluctuate. These fluctuations in-
crease with time and lead to an anomalous diffusion and
consequently to FA. Here we demonstrate that inelastic
collisions of the particle with the boundary break down the
mechanism of FA and therefore suppress the unlimited
energy gain of the bouncing particle. The dissipation stops
the successive crossings of the particle of the stochastic
layer. This suppression confirms a conjecture [29] for
suppression of FA in 2D billiards under inelastic collisions.

The model under study consists of a classical particle
confined to a closed domain whose boundary changes in
time according to the following equation in polar coordi-
nates

1 — e[1 + acos(r)]?

R(6,e,a,t) = ,
6, ¢.a,1) 1+ ¢[1 + acos(t)]cos(g8)

D

where e is the eccentricity of the ellipse, ¢ = 1 is an
integer, a is the amplitude of the time perturbations, 6 is
the angular coordinate, and ¢ is the time. If « = 0 and ¢ =
1, the results for the static case are recovered where there
are two conserved quantities: (1) the kinetic energy of the
particle [7] and (2) the angular momentum about the two
foci [8], which is equal to
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The dynamics of the model is described by the following
implicit 4D mapping. We start with the initial condition
@4,, a,, V,, t,), where «, is the angle between the trajec-
tory of the particle and the tangent line to the boundary of
the billiard table with the angular coordinate 6, V,, > 0 is
the velocity of the particle and ¢, is the moment of the nth
collision of the particle with the boundary. Figure 1 illus-
trates the corresponding coordinate angles for a typical
orbit in the elliptical billiard. Given the initial condition,
the dynamics of the particle is given via the relations
X(1) = X(0,,1,) + |V, | cos(a, + ¢,)(t = 1,) and Y (1) =
Y(0,.1,) + |V,|sin(a, + ¢,)(t —1,)  where ¢, =
arctan(Y'(0,, 1,)/X'(0,,1,)), X' =dX/df, and Y' =
dY/d6. The new angular coordinate 6,,,, is obtained by
following the trajectory of the particle via molecular dy-
namics until the moment 7 = ¢, + At where At satisfies
the equation

1 —e*[1 + acos(AD)]?
1+ e[l + acos(At)]cos(gh)

VX2(AD + Y2(Ar) = 3)

The moment of the next collision is obtained as

iy \J[xwm) — X(0,)F + [Y(0,11) = ¥(6,)F
V|
“

The reflection rule for the collision of the particle with the
boundary is given via the relations

- - -

‘711-%—1 : Tn+1 = V;l : Tn+1» (5)

VLH—I “Nyyy = —J’V;'NHH, (6)
where 7 and N are the unit tangent and normal vectors,
respectively, the prime indicates that the velocity of the
particle is measured in the reference frame of the moving
wall, and y € [0, 1] is the restitution coefficient. For y =

Y

FIG. 1 (color online).

Sketch of the elliptical billiard.

1 one gets the case of the elastic collisions. Based on
Egs. (5) and (6), the components of the particle’s velocity
after collision are given by

> -

Vn-H ' Tn+1 = |\7,,|[cos(an + d)n) COS(¢n+1)]
+ |V, |[sin(a, + ¢,)sin(¢, )] (7)

>

‘711+1 ' Nn+1 = _’yl‘-}nl[Sin(an + ¢n) COS(¢;1+1)]

— IV, [ cos(a, + ¢,)sin(¢,))]
dR(1)
dt
dR(1)
dt

+(1+y) [sin(6,,+1) cos(¢b,+1)]

[COS(0n+ 1) Sin(¢n+ 1 )])
®)

where dR/dt is the velocity of the moving boundary at the
(n + 1)th collision. The velocity of the particle after this
collision is

—(1+y)

Vit1 = J(‘_}}H»l Ty + (Vysy - Npit)2, 9

and the coordinate angle «,, equals

Qpy1 = arCtan([VnJrl ' ]\711+1]/[‘7n+1 . Tn+1])' (10)

Figure 2 shows the phase space for the static boundary
for ¢ = 1 overlapped with a stochastic layer around the
separatrix which emerges when time perturbations to the
boundary are introduced. F > 0 correspond to the rotator
orbits and F < 0 to the librator ones. The average velocity
of the particle as a function of n is shown in Fig. 3 for
different control parameters. The initial conditions used
were ag = /2, 0, = 7, which correspond to the location
of the heteroclinic point along the separatrix for the static

Rot\ator ¥
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FIG. 2 (color online). Phase space of the static billiard over-
lapped with a stochastic layer created by the time perturbations.
The control parameters used were static case ¢ = 0.4, ¢ = 1 and
time-dependent perturbation e = 0.4, @ = 0.01, and y = 1 with
Vo, = 1 and 10* collisions with the boundary.
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FIG. 3 (color online). (a) V X n for an ensemble of 100
particles for ¢ = 1. The parameters are labeled in the figure.
(b) V X n for a single particle. The control parameters were e =
0.5, a = 0.1, and y = 1. The slope obtained is 0.2097(1).

boundary with ¢ = 1, V, = 10~ and 100 uniformly dis-
tributed 7, € [0, 277]. The control parameters are labeled in
the figure. One can see that after an initial transient and the
regime of a fast growth marked by a strongly chaotic
behavior of F [see Fig. 5(b)], the curves stabilize in a
regime of a constant growth. A power law fitting for the
control parameter ¢ = (0.5 and a = 0.1 gives the slope
0.161(1). Note, however, that the time perturbations used
in this paper are rather different from the ones used in [27],
which lead to different growth exponents. The simulations
were run up to 107 collisions with the boundary. A longer
simulation for a single initial condition up to 10° collisions
with the boundary is shown in Fig. 3(b). The slope of the
growth for this curve is slightly larger and a power law
fitting gives 0.2097(1), which clearly confirms the presence
of FA. These results allow us to extend the LRA conjecture
[23] and replace chaotic dynamics for the static boundary
to the existence of a heteroclinic orbit in the phase space.
When the time perturbations are introduced, the separatrix
turns into a stochastic layer [27] therefore leading the
particle to experience FA.

The behavior observed for the elliptical domain, i.e.,
g = 1 can be extended to other shapes of the boundary.

Moreover, if very thin stochastic layers exist, the introduc-
tion of time dependence of the boundary enlarges them,
therefore leading the particle to exhibit FA. Consider, for
example, g = 3. For the static case, i.e., a = 0, the control
parameter e, = 1/(¢g> — 1) marks a change when the
boundary exhibits nonconcave pieces. The invariant span-
ning curves in the phase space are therefore destroyed for
e = e,. Figure 4(a) shows the phase space for ¢ = 3. One
can clearly see two symmetric chains of period-three orbits
separated from a very thin stochastic layer that, for the
definition of the pixels of the figure, rather look like
separatrix curves. One of them is around a = 77/3 and
the other is around o = 277/3. There are also three chains
of period-six orbits where one of them is near a = /2
and the other two are near the top and near bottom,
respectively. An overlap with the stochastic layers for the
time-dependent boundary is shown in Fig. 4(b). Therefore,
one is lead to believe that FA will take place, and it indeed
does.

We now discuss the effect of inelastic collisions when
v < 1. As the particle hits the boundary, there is a loss of
energy upon collision which changes drastically the dy-
namics of the particle. Namely, the particle wanders in the

FIG. 4 (color online). (a) Phase space for ¢ = 3 and e¢ = 0.01.
(b) Enlargement of the upper period-three chain (black) over-
lapped by the large stochastic layer [gray (red)] created by the
time dependence. We used a = 0.01.
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FIG. 5 (color online). (a) Plot of V,, X n for different damping
coefficients, as labeled in the figure. (b) Plot of F, X n for the
same control parameters as in (a).

stochastic layer for a while. After that, it escapes and stays
trapped either in librator or rotator orbits. Figure 5(a)
shows the velocity of the particle as a function of n, for ¢ =
1 and for three different damping coefficients: y = 1 (non-
dissipative case), y = 0.9999, and y = 0.999. One can see
that even for a small dissipation, the regime of the energy
growth is interrupted, therefore leading the particle’s en-
ergy to a constant plateau. Figure 5(b) shows, in a
log Xlinear plot, the time evolution of the observable F
[see Eq. (2)]. One can see that for y = 1, the value of F
fluctuates around O up to 5 X 10% collisions. The dynamics
of the particle for two considered values of y < 1, dem-
onstrates a trapping in the rotator orbits after some hun-
dreds of collisions. However the particle can also evolve
towards librator orbits. These results confirm that FA is
suppressed because of a breakdown of the mechanism
producing FA. Since the mapping changes very little with
the inelastic collisions, one can claim that FA is not a
structurally stable phenomenon.

To conclude, we have shown that suppression of FA by
the introduction of even very small dissipation is possible
for dynamical systems in which the static (unperturbed)
situation demonstrate completely regular (integrable) be-

havior. Therefore FA seems to be not a structurally stable
phenomenon.
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