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We report on the first experimental observation of dynamic localization of light in two-dimensional

photonic lattices. We demonstrate suppression of beam diffraction in hexagonal lattices created by weakly

coupled waveguides with axis bending. We also reveal that this effect is strongly related to dynamic

localization in zigzag waveguide arrays with next-nearest neighboring interactions.
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Because of the stunning correspondence between quan-
tum mechanics and optics in waveguides, in the past few
years many quantum-particle phenomena have been trans-
lated into an optical analogue, where the experimental
accessibility is much simpler [1]. In this vein, a number
of fundamental concepts such as the quantum Zeno effect
[2] and coherent destruction of tunneling [3], atomic and
molecular dynamics such as Rabi oscillations [4] or the
non-Markovian decay of an isolated state into a continuum
[5], and solid state phenomena like surface waves [6,7] and
Anderson localization [8–13] have been experimentally
demonstrated by employing an optics platform. Particular
attention was devoted to the visualization of photonic
analogues of coherent transport phenomena in crystals,
such as Bloch oscillations [14–16], Zener tunneling [17],
quasi-Bloch oscillations [18], and dynamic localization
effect [19,20]. Albeit such phenomena have been also
observed in several other physical systems, including
cold atoms or Bose-Einstein condensates in accelerated
optical lattices [21,22] and acoustical waves in layered
media [23], most of the previous experimental studies
were limited to the consideration of the coherent transport
in one-dimensional geometries.

On the other hand, coherent transport in multidimen-
sional lattices is generally strongly affected by lattice
geometry, and it may show new effects with no counterpart
in one-dimensional lattices. For instance, the motion of a
two-dimensional Bloch particle under a dc driving field
undergoes complex Lissajous-type trajectories, and aniso-
tropic Zener tunneling occurs in the high-field regime.
Similarly to Bloch oscillations, coherent transport in ac
fields and dynamic localization are also affected by the
effects of dimensionality and geometry of the lattice [24].
In this work we use the term ‘‘dynamic localization’’ (DL)
in the sense in which it was originally introduced by
Dunlap and Kenkre [24]. DL refers to the suppression of
broadening of a particle wave packet during its motion in a

periodic potential under the action of an externally applied
ac electric field [24–26], which is reminiscent of the self-
collimation effect in photonic crystals [27]. This kind of
localization is thus conceptually very different from other
forms of localization, like Anderson localization [9,11–13]
or localization in the periodically kicked quantum rotator
problem [28]. DL was observed for cold atoms and Bose-
Einstein condensates in one-dimensional optical lattices
[29,30]. DL for optical wave packets has been recently
observed in one-dimensional arrays of periodically curved
waveguides, where a change of the waveguide curvature
mimics the effects of an ac driving field [19,20]. In multi-
dimensional lattices, application of suitable ac fields en-
ables one to engineer the effective geometry and even
dimensionality of the lattice [24,31]. For instance, an
effectively one-dimensional wave packet spreading in a
two-dimensional lattice was recently demonstrated [32]
and explained as a partial DL resonance. Coherent control
of matter waves in multidimensional lattices was also
reported [33]. However, experimental realization of a com-
plete suppression of wave packet broadening via the two-
dimensional DL effect is still lacking.
In this Letter we report on the direct experimental ob-

servation of DL effect in two-dimensional periodic sys-
tems. This effect is registered as a strong suppression of
two-dimensional diffraction and beam broadening in a
hexagonal lattice created by periodically curved optical
waveguides. We further demonstrate DL in zigzag-type
waveguide arrays, and reveal that this phenomenon is
strongly related to DL in quasi-one-dimensional lattices
with next-nearest-neighboring coupling between the sites.
In our setting the waveguides are periodically bent in the

(x-z) plane along the propagation direction z, which is
expressed mathematically through the transverse shift of
the waveguides x0ðzÞ. We define the complex beam enve-
lope function �ðx; y; zÞ in the local coordinate system
(moving with the lattice). Then, the beam dynamics can
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be described by the Schrödinger-type equation [1]

i�
@�

@z
¼ �

�
�2

2n0
r2

? þ �nðx; yÞ � n0 €x0ðzÞx
�
�; (1)

where � ¼ �=2� is the reduced wavelength, n0 is the bulk
refractive index, �nðx; yÞ is the transverse refractive index
variation caused by the waveguides, and the dot stands for
the derivative in z. There is an evident similarity between
Eq. (1) and the quantum mechanical Schrödinger equation
for a nonrelativistic charged particle of mass m and charge
q under the action of an external time-varying electric
field, when one replaces the spatial coordinate z with
time t, the reduced wavelength � with the reduced
Planck’s constant @, the refractive index n0 with the parti-
cle massm, the optical potential�nðx; yÞwith the quantum
potential �Vðx; yÞ, and the array bending n0 €xðzÞ with the
external force �qEðtÞ caused by the driving electric field
EðtÞ.

Light transport in the lattice can be approximately de-
scribed by a tight-binding analysis of Eq. (1), where
the total electric field envelope �ðx; y; zÞ is represented
[31] as a superposition of the modes �0ðx; yÞ of the indi-
vidual waveguides numbered as n, m, �ðx;y;zÞ’P

n;mEn;mðzÞ�0½x�xn;m;y;z�exp½�i! _x0ðzÞxn;m=d�, where
xn;m are the waveguide coordinates, and for a hexagonal

lattice shown schematically in Fig. 1(a) xn;m ¼
ðnþm=2Þd, d is the waveguide spacing, and ! ¼
2�n0d=� is the dimensionless frequency. We take into
account coupling between the modes of nearest wave-

guides, and obtain the resulting coupled-mode equations
in the following form [31]:

i
dEn;m

dz
¼ �C�

1En�1;m � C1Enþ1;m � C�
2En;m�1

� C2En;mþ1 � C�
3En�1;mþ1 � C3Enþ1;m�1;

(2)

where C1 ¼ C exp½�i! _x0ðzÞ� and C2 ¼ C3 ¼
C exp½�i! _x0ðzÞ=2� are the coupling coefficients between
the neighboring waveguides [Fig. 1(a)], which phase is
modified due to bending, and asterisk stands for the com-
plex conjugation. The real-valued coefficient C defines the
coupling strength and characterizes the diffraction rate in a
straight hexagonal waveguide array with x0 � 0.
We have predicted recently [31] that a complete two-

dimensional DL for both transverse dimensions can be
realized for a special class of bending profiles, consisting
of alternating straight and sinusoidal segments in each
bending period L,

x0ðzÞ ¼
�
0; if 0 � z � z0;
Afcos½2�ðz�z0Þ

L�z0
� � 1g; if z0 � z � L; (3)

provided that the bending parameters satisfy the conditions
z0 ¼ ½1� 1=J0ð�Þ��1L and A ¼ �z0�=�!J0ð�Þ, where
� � 2:61 is defined by the equation J0ð�Þ ¼ J0ð2�Þ and
J0 is the Bessel function. The resulting waveguide bending
profile which corresponds to our experimental samples is
shown in Fig. 1(b).
In order to visually demonstrate the difference between

the usual beam diffraction and beam dynamics in the
regime of dynamic localization, we quantify the rate of
beam spreading with the values of the participation ratio,
defined as PR ¼ ln½ðPn;mjEn;mj2Þ2=

P
n;mjEn;mj4�. We use

the discrete Eq. (2) to compute numerically participation
ratios, and show in Fig. 1(c) the characteristic dependen-
cies PRðzÞ for beams propagating in straight (dashed line)
and curved lattices where the condition for DL is satisfied
(solid line). In these examples, we have considered input
excitation of a single waveguide. We see that in the straight
lattice continuous diffraction-induced broadening of the
beam occurs, whereas in the curved lattice beam size
experiences periodic oscillations and full refocusing after
each waveguide bending period L as a result of the two-
dimensional dynamic localization.
In order to observe DL experimentally, we fabricated

two-dimensional hexagonal waveguide arrays using the
direct femtosecond laser-writing technique in fused silica
glass [34]. When ultrashort laser pulses are focused into the
bulk silica, the density is locally increased. Accordingly,
the refractive index is locally increased in the exposed
regions, and these act as optical waveguides. We move
the sample continuously with respect to the beam to in-
scribe curved waveguides of the required shape. Our
samples contain one full bending period with L ¼
25 mm, and the spacing between neighboring waveguides
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FIG. 1 (color online). (a) Sketch of the couplings in a hexago-
nal lattice. (b) Periodic waveguide bending profile.
(c) Numerically calculated participation ratios for the lattices
created by straight (dashed) and curved (solid) waveguides.
Parameters match the measured characteristics of the experi-
mental samples.
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is d ¼ 22 �m. Samples have hexagon-shaped boundaries
with 5 waveguides at each facet [see Fig. 2(a)]. To char-
acterize the arrays, we launch cw laser light at the wave-
length � ¼ 633 nm into the central waveguide of the
samples. Experimentally measured output beam profile
for the straight sample is shown in Fig. 2(a), where strong
beam diffraction is recorded. One can notice that light
already hits the sample boundaries because of the finite
number of the waveguides in the array. In contrast, in the
curved sample the full suppression of the output beam
diffraction in all transverse directions is clearly visible
[Fig. 2(c)]. Experimentally observed diffraction patterns
are in a good agreement with the output profiles calculated
by numerical integration of Eq. (2). We choose the cou-
pling coefficient C ¼ 0:165 mm�1 to match the diffraction
pattern at the output of the straight array [cf. Figs. 2(a) and
2(b)], and then confirm that the DL regime is present under
such conditions [cf. Figs. 2(c) and 2(d)]. Our simulations
indicate that the diffraction is strongly reduced in the
curved samples, such that the light does not hit the sample
boundaries and DL is not affected by the finite array size in
our experiments. Importantly, two-dimensional DL is
achieved in our experiments using purely one-dimensional
lattice modulation [Eq. (3)] in the (x, z) plane.

A similar DL effect can also be observed in zigzag
shaped lattices [35], which are described by Eq. (2) with
m taking valuesm ¼ 1; 2 [see Fig. 3(a)]. Interestingly, such
zigzag lattices can be considered as quasi-one-dimensional
lattices with the next-nearest-neighbor lattice site interac-
tion [36] if we number all lattice sites with a single index n
according to their position along n axis [Fig. 3(a)]. Then
the coupled-mode equations for the modal amplitudes at

the various waveguides read

i
dEn

dz
¼ �C�

2En�1 � C2Enþ1 � C�
1En�2 � C1Enþ2; (4)

where the values of C1 and C2 play the role of the coupling
strengths between the nearest and next-nearest neighbors.
We further note that the DL regime can be realized in the
periodically curved zigzag lattice with exactly the same
waveguide bending profile as was used for the hexagonal
lattice. The equivalence between the two-dimensional dif-
fraction suppression in the hexagonal and quasi-one-
dimensional zigzag lattices can be ascribed to the topo-
logical similarity of the unit cells in both cases [cf.
Figs. 1(a) and 3(a)]. Participation ratios computed numeri-
cally for infinite zigzag arrays by solving Eq. (4) are shown
in Fig. 3(b). Similar to the case of the hexagonal array, light
beam experiences periodic refocusing in the curved zigzag
array in the DL regime [Fig. 3(b), solid curve], in contrast
to the diffraction broadening in the straight array [Fig. 3(b),
dashed curve].
To confirm these predictions experimentally, we fabri-

cated waveguide arrays with the zigzag geometry and
required waveguide bending. Our samples contain 31
waveguides (16 in the bottom row and 15 in the top
row). The length of the samples is L ¼ 100 mm and the
waveguide spacing is d ¼ 26 �m. The curved sample
contains one full bending period. In order to visualize the
light evolution which occurs inside the zigzag lattice be-
tween the bending periods, we employ a special fluores-
cence microscopy technique [37]. For the fabrication of
the waveguides, we use fused silica with a high content
of hydroxide. This leads to the formation of color centers
in the waveguides during the laser-writing process.
These color centers become excited when we launch the
laser beam at the wavelength � ¼ 633 nm into the wave-
guides, and images of the light propagation are recorded

FIG. 2 (color online). (a) Experimentally measured and
(b) numerically calculated output beam profiles for the hexago-
nal lattice created by straight waveguides. (c) Experimentally
measured and (d) numerically calculated output beam profiles
for the hexagonal lattice created by periodically curved wave-
guides.
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FIG. 3 (color online). (a) Sketch of the couplings in a zigzag
array. (b) Numerically calculated participation ratios for the
straight (dashed) and periodically curved (solid) waveguide
arrays. Lattice parameters match the experiments in Fig. 4.
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onto a CCD camera from the top of the sample [Figs. 4(a)
and 4(c)]. In our experiments, light is coupled to the central
waveguide in the top row of the zigzag array [Fig. 4].

In Figs. 4(a) and 4(c) experimentally recorded fluores-
cent images of the beam propagation inside the arrays are
shown together with the measured output intensity distri-
butions. Clearly, in the straight array the light field broad-
ens significantly during propagation [Fig. 4(a)]. By
matching the numerical simulations of Eq. (4) with the
measured diffraction pattern at the output of the straight
array [cf. Figure 4(a) and 4(b)] we find the value of the
coupling coefficient to be C ¼ 0:026 mm�1. In contrast, in
the curved sample in the regime of dynamic localization,
the light field initially broadens but then it refocuses again
into the excited waveguide at the output of the array after
the propagation over one full bending period [Fig. 4(c)], in
excellent agreement with the corresponding numerical
computations [Fig. 4(d)].

In conclusion, we have presented the first experimental
observation of two-dimensional DL effect realized in
modulated hexagonal photonic lattices laser written in
fused silica. We have demonstrated that the DL effect in
hexagonal lattices can be related to the light localization in
quasi-one-dimensional zigzag waveguide arrays with the
next-nearest-neighboring coupling. In the context of op-
tics, our experiment provides a demonstration of full two-
dimensional diffraction management based on the concept
of the DL effect.
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