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Universal relations that hold for any state provide powerful constraints on systems consisting of

fermions with two spin states interacting with a large scattering length. In radio-frequency (rf)

spectroscopy, the mean shift in the rf frequency and the large-frequency tail of the rf transition rate are

proportional to the contact, which measures the density of pairs with small separations. We show that

these universal relations can be derived and extended by using the short-time operator product expansion

of quantum field theory. This is a general method for identifying aspects of many-body physics that are

controlled by few-body physics.

DOI: 10.1103/PhysRevLett.104.223004 PACS numbers: 31.15.�p, 03.75.Nt, 34.50.�s, 67.85.Lm

Trapped ultracold atoms allow the study of the few-body
physics and the many-body physics of systems in which the
fundamental interactions between the constituents are
understood and can be controlled experimentally. The
possibility of making the interactions between the atoms
arbitrarily strong presents a challenge to theory, because
many theoretical methods break down when interactions
become too strong. Specifying the interactions between the
constituents of the many-body system in terms of two-body
interactions is a trivial example of a connection between
few-body physics and many-body physics, but there can be
deeper connections. Among the simplest examples of
strongly interacting systems are ones that consist of atoms
that interact with a large scattering length [1]. The two-
body problem for such atoms can be solved analytically,
the three-body problem can be solved exactly numerically,
and the four-body problem is becoming tractable using
modern computers. This makes it an interesting system
for studying how nontrivial aspects of many-body physics
can be controlled by few-body physics.

A powerful experimental tool for studying ultracold
atoms is radio-frequency (rf) spectroscopy, in which atoms
in one hyperfine spin state are excited into a different spin
state. Pioneering applications of this method were mea-
surements of the binding energy of weakly bound diatomic
molecules of 40K atoms [2] and the study of the pairing gap
in a many-body system of 6Li atoms [3]. The method had
been extended to allow the spacial resolution of trapped
systems [4] and the momentum resolution of the excited
atoms [5]. A recent review of rf spectroscopy has explored
the relation to photoemission experiments on high-
temperature superconductors [6].

Universal relations between various properties of a sys-
tem that must be satisfied in any state can provide powerful
constraints on theoretical methods. Shina Tan has derived
universal relations for systems consisting of fermions with
two spin states that interact with a large scattering length a
[7]. These relations all involve a property of the system
called the contact. It is an extensive quantity that can be

expressed as the integral over space of the contact density,
which is proportional to the number of pairs with different

spins per ðvolumeÞ4=3 [8]. The Tan relations include the
coefficient of the 1=k4 tail in the momentum distributions
at large momentum, a decomposition of the total energy
into terms that are insensitive to short distances, the rate of
change of the free energy due to a change in a, the relation
between the pressure and the energy density in a homoge-
neous system, and the virial theorem for a system in a
harmonic trapping potential [7]. Tan derived his relations
within the framework of the many-body Schrödinger equa-
tion using novel methods involving generalized functions.
In Ref. [8], Braaten and Platter rederived the Tan relations
within the framework of quantum field theory using stan-
dard renormalization methods together with the short-
distance operator product expansion. The Tan relations
have also been rederived using less formal methods [9].
The contact also plays an important role in the rf spec-

troscopy of ultracold atoms. In a many-body system con-
sisting of atoms in spin states 1 and 2, a rf signal with
frequency ! can be used to transfer atoms from the spin
state 2 into a third spin state 3. There are sum rules that
constrain the rf transition rate �ð!Þ [10]. Of particular
interest is the case of fermionic atoms for which every
pair has strong interactions determined by large scattering
lengths a12, a13, and a23. An example is the lowest three
hyperfine spin states of 6Li atoms at generic values of the
magnetic field. In this case, the sum rules are

Z 1

�1
d!�ð!Þ ¼ ��2N2; (1a)

Z 1

�1
d!!�ð!Þ ¼ ð�2=4mÞða�1

12 � a�1
13 ÞC12; (1b)

where � is the Rabi frequency determined by the strength
of the rf signal, N2 is the number of atoms of type 2, and
C12 is the contact for atoms of types 1 and 2. We measure
the rf frequency ! relative to the hyperfine frequency
difference between atoms 2 and 3, and we set @ ¼ 1. The
sum rule in Eq. (1b) [11,12] implies that the mean shift in
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the rf frequency due to interactions is proportional to the
contact and vanishes if a13 ¼ a12. The coefficient of the
contact diverges in the limit a13 ! 0, which indicates that
the mean shift in the rf frequency is sensitive to the range r0
of the interactions between the atoms if a13 is not large.
The sensitivity to the range arises in this case because �ð!Þ
has a high-frequency tail that decreases like !�3=2 and is
proportional to the contact [13]:

�ð!Þ ! �2

4�
ffiffiffiffi
m

p
!3=2

C12 ða13 � 0Þ: (2)

The power-law tail extends out to ! of order 1=ðmr20Þ,
beyond which it is cut off by range effects.

In this Letter, we point out that the short-time operator
product expansion of quantum field theory provides a
general method for deriving connections between few-
body physics and many-body physics. We use it to rederive
and extend the universal results for rf spectroscopy in
Eqs. (1b) and (2). We also use it to derive new sum rules
that are insensitive to range effects.

The operator product expansion (OPE) is a powerful tool
for studying strongly-interacting quantum field theories
that was invented independently by Wilson, Kadanoff,
and Polyakov in 1969 [14]. It expresses the product of
local operators at different space-time points as an expan-
sion in local operators with coefficients that are functions
of the separation of the operators:

OA

�
Rþ 1

2
r; T þ 1

2
t

�

�OB

�
R� 1

2
r; T � 1

2
t

�
¼ X

C

WCðr; tÞOCðR; TÞ: (3)

The sum is over the infinitely many local operators OC.
The functions WCðr; tÞ are called Wilson coefficients. The
short-distance OPE, with the operators at the same time
(t ¼ 0), is an asymptotic expansion for small jrj [15]. It can
be generalized to a short-time OPE by analytically con-
tinuing the time difference t to a Euclidean time � defined
by t ¼ �i�. This form of the OPE is an asymptotic expan-
sion for small jrj and �.

A classic application of the short-time OPE in high-
energy physics is electron-positron (eþe�) annihilation.
In high-energy eþe� collisions, most of the annihilation
cross section is into hadrons (mesons and baryons). The
fundamental theory for hadrons is quantum chromodynam-
ics (QCD), which is a strongly-interacting quantum field
theory. As far as the hadrons are concerned, the annihila-
tion of an eþe� pair with center-of-mass energy E results
in the electromagnetic current operator Jðr; tÞ acting on the
QCD vacuum state. This creates a quark and antiquark at a
point with total energy E and with equal and opposite
momenta. They are subsequently transformed by the strong
interactions of QCD into one or more hadrons. The inclu-
sive cross section �ðEÞ for eþe� annihilation into hadrons
can be expressed formally in terms of the expectation value

in the QCD vacuum of a product of electromagnetic cur-
rents:

�ðEÞ ¼ ð4��=3E4ÞImi
Z

dteiðEþi�Þt

�
Z

d3rh0jTJðr; tÞ � Jð0; 0Þj0i; (4)

where � � 1=137 is the fine structure constant of QED.
The short-time OPE can be used to expand the operator
product Jðr; tÞ � Jð0; 0Þ in powers of local operators with
increasing dimensions. The leading operator is the unit
operator, whose expectation value in any normalized state
is 1 and whose dimension is 0. The next higher dimension
operators that have nonzero expectation values in the QCD
vacuum are scalar quark operators with dimension 3 and
the gluon field strength operator with dimension 4. Because
of the asymptotic freedom of QCD, the Wilson coefficients
can be calculated using perturbation theory in the QCD
coupling constant �s. For large complex E, the Fourier
transforms of the Wilson coefficients of the higher dimen-
sion operators are suppressed by powers of E. The cross
section at asymptotically large energy E can therefore be
obtained by truncating the OPE after the unit operator and
calculating its Wilson coefficient to leading order in �s.
Inserting the OPE into Eq. (4) and neglecting quark masses
relative to E, one obtains the simple result

�ðEÞ ! 4��2
X
q

e2q=E
2; (5)

where the sum is over the quark flavors q and eq is the

electric charge (þ 2
3 or � 1

3 ) of the quark [16]. The leading

corrections at large E decrease as powers of 1= lnðEÞ and
can be calculated using perturbation theory in �s.
To apply the OPE to ultracold atoms, the problem must

be formulated in terms of a local quantum field theory.
Fermionic atoms with hyperfine spin states 1, 2, and 3 that
interact with large pair scattering lengths a12, a23, and a13
can be described by a local quantum field theory with
quantum fields c �ðrÞ, � ¼ 1, 2, 3. The interaction term
in the Hamiltonian density that gives the large scattering
length a12 is

H int ¼ ð�0;12=mÞc y
1 c

y
2 c 2c 1: (6)

The bare coupling constant �0;12 depends on the ultraviolet

momentum cutoff �: �0;12 ¼ 4�=ð1=a12 � 2�=�Þ. Simi-

lar interaction terms give the large scattering lengths a13
and a23. In Ref. [8], the contact C12 associated with atoms
1 and 2 was identified as the integral over space of the
expectation value of a local operator:

C12 ¼
Z

d3Rh�2
0;12c

y
1 c

y
2 c 2c 1ðRÞi: (7)

Note that the contact density operator has an additional
factor of the bare coupling constant compared to the inter-
action term in Eq. (6). In Ref. [8], two of Tan’s universal
relations were rederived using the short-distance OPE. The
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OPE for c y
� and c � was used to show that the momentum

distributions for atoms of types 1 and 2 have identical 1=k4

tails whose coefficient is the contact C12. The OPE for
c y

1 c 1 and c y
2 c 2 was used to show that the contact density

is proportional to the number of pairs of atoms of types 1

and 2 per ðvolumeÞ4=3.
The universal relations for rf spectroscopy in Eqs. (1b)

and (2) can be rederived and extended by using the short-
time OPE. We consider a many-body system consisting of

ultracold atoms of types 1 and 2 only. As far as the atoms
are concerned, rf spectroscopy with angular frequency !
proceeds through the action of the local operator

c y
3 c 2ðr; tÞ on the many-body state. The operator trans-

forms an atom of type 2 into an atom of type 3 with energy
larger by !. The inclusive rate �ð!Þ for producing final
states containing an atom of type 3 can be expressed
formally in terms of the expectation value in the many-
body state of a product of operators:

�ð!Þ¼�2Imi
Z
dteið!þi�ÞtZ d3R

Z
d3r

�
Tc y

2 c 3

�
Rþ1

2
r;t

�
c y

3 c 2

�
R�1

2
r;0

��
: (8)

The Wilson coefficients in the OPE are determined by few-body physics and can be calculated diagrammatically using
methods described in Ref. [17]. The lowest dimension operators that have nonzero expectation values in a state that

contains no atoms of type 3 are c y
2 c 2, which has scaling dimension 3, and the contact density operator �2

0;12c
y
1 c

y
2 c 2c 1

which has scaling dimension 4. The scaling dimensions of these and other operators can be deduced from the operator-state
correspondence of conformal field theory [18]. The Fourier transforms of the corresponding terms in the OPE are

Z
dtei!t

Z
d3rc y

2 c 3

�
Rþ 1

2
r; t

�
c y

3 c 2

�
R� 1

2
r; 0

�
¼ ði=!Þc y

2 c 2ðRÞ þ iW12ð!Þ�2
0;12c

y
1 c

y
2 c 2c 1ðRÞ þ . . . : (9)

TheWilson coefficients can be determined by matching the
matrix elements of both sides between asymptotic incom-
ing and outgoing few-atom states. For c y

2 c 2, one can use
single-atom states of type 2. For the contact density opera-
tor, one can use two-atom scattering states consisting of
atoms of types 1 and 2. The matrix elements for these states
can be calculated using the analytic solution to the two-
body problem. The matrix element of the contact density
operator is proportional to 1=j1=a12 þ ikj2, where k2=m is
the total energy of the scattering atoms. Its Wilson coeffi-
cient is

W12ð!Þ ¼ a�1
12 � a�1

13

4�m!2

a�1
12 � ffiffiffiffiffiffiffiffiffiffiffiffi�m!

p
a�1
13 � ffiffiffiffiffiffiffiffiffiffiffiffi�m!

p : (10)

The OPE in Eq. (9) is an asymptotic expansion for large
j!j along any ray in the complex ! plane except possibly
along the real ! axis, where the Wilson coefficients have
poles and branch points.

The scaling of the Wilson coefficients at large ! is
determined simply by the scaling dimensions of the opera-
tors and by symmetries. The rf transition operators on the
left side of the OPE in Eq. (9) each have scaling dimension
3. Since the integral over nonrelativistic space and time has
dimension �5, the total scaling dimension is 1. On the
right side of the OPE, the Wilson coefficient of an operator
of dimension d must have terms that scale as

!ð1�d�nÞ=2ða�1Þn, where a is a scattering length. Unless
factors of a�1 are required by a symmetry, the leading

behavior is !ð1�dÞ=2. For c y
2 c 2, which has scaling dimen-

sion 3, the leading behavior is correctly predicted to be
!�1. The contact density operator has scaling dimension 4,

so the leading behavior might be expected to be !�3=2.
However the rf transition operators are invariant under a
subgroup of an SUð2Þ symmetry that is respected by the

Hamiltonian if a12 ¼ a13 [10]. The contact density opera-
tor does not respect this symmetry, so W12ð!Þ must have a
factor of a�1

13 � a�1
12 that vanishes when a12 ¼ a13. Thus its

leading behavior is !�2, in agreement with Eq. (10).
The short-time OPE can be used to derive sum rules

for integrals over the rf frequency of the formR1
�1 d!Fð!Þ�ð!Þ, where Fð!Þ is a weight function that

is analytic on the real! axis. Upon inserting the expression
in Eq. (8) for �ð!Þ as a discontinuity in! into the integral,
it can be expressed as a line integral over a contour that
wraps around the real axis. The sum rules in Eq. (1) can be
derived by deforming the contour into a circle at infinity in
the complex ! plane. The short-time OPE converges
everywhere along the contour except possibly near the
real axis. Inserting the OPE in Eq. (9) into the expression
for �ð!Þ in Eq. (8) and then evaluating the contour inte-
grals, we obtain the sum rules in Eq. (1).
The short-time OPE can also be used to derive the large-

frequency behavior of the rf intensity. Inserting the OPE in
Eq. (9) into the expression for �ð!Þ in Eq. (8), we obtain

�ð!Þ ! �2ða�1
12 � a�1

13 Þ2
4�

ffiffiffiffi
m

p
!3=2ða�2

13 þm!ÞC12: (11)

It was pointed out in Ref. [19] that �ð!Þ should decrease

asymptotically like!�5=2. The coefficient of the contact in

the !�5=2 tail is a new result. The analytic result for the rf
transition rate �ð!Þ for the weakly-bound dimer associated
with large positive a12 [20] agrees with Eq. (11) in the limit
! � 1=ðma212Þ if we use the fact that the contact of the
dimer is C12 ¼ 8�=a12 [7]. The result in Eq. (11) for the
tail in the rf transition rate relies on the scattering length
a13 being large compared to the range r0. If a13 is not large,
the corresponding result can be obtained by taking the limit
a13 ! 0 in Eq. (11), which gives Eq. (2).
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Sum rules that are less sensitive to range effects can be
obtained by using a weight function Fð!Þ that decreases as
! ! 1. Using a Lorentzian centered at!0 with half-width
at half-maximum � gives a two-parameter family of sum
rules. Upon deforming the contour into a circle at infinity

along which the integral vanishes, we are left with the
contributions from the poles in ! at !0 � i�. The con-
vergence of the expansion for the sum rule is governed by
the convergence of the OPE at this complex frequency and
is therefore insensitive to the breakdown of the OPE near
the real axis. In the limit a13 ! 0, this sum rule is

Z 1

�1
d!

�=�

ð!�!0Þ2 þ �2
�ð!Þ ¼ �2�

!2
�

N2 þ�2½ð!2
0 � �2Þbþ þ 2!0�b� � 2!0�a

�1
12 �

4�m!4
�

C12 þ . . . : (12)

where !� ¼ ð!2
0 þ �2Þ1=2 and b� ¼ ½mð!� �!0Þ=2�1=2.

The analogous sum rule for eþe� annihilation into hadrons
was derived in Ref. [21]. Sum rules of the formR!0

0 d!Fð!Þ�ð!Þ, where Fð!Þ is a polynomial, are also
insensitive to range effects if !0 � 1=ðmr20Þ. The conver-
gence of the expansion for the sum rule is governed by the
convergence of the OPE on the circle j!j ¼ !0. Sensitivity
to the breakdown of the OPE near the real axis can be
decreased by including a factor of !�!0 in Fð!Þ.

In the OPE in Eq. (9), there are additional terms that
have nonzero matrix elements in states that contain atoms
of type 3. The lowest dimension operator is the 23 analog
of the 12 contact density operator in Eq. (7). If the rf
operators in Eq. (9) are replaced by their Hermitian con-

jugates, the local operators include c y
3 c 3 and the 13

contact density operator. There is also a 123 contact den-

sity operator proportional to c y
1 c

y
2 c

y
3 c 3c 2c 1, whose

scaling behavior is governed by Efimov physics [1]. It
has a complex scaling dimension whose real part is 5 and
whose imaginary part is �2s0, where s0 � 1:006 24. Thus
its Wilson coefficient will decrease asymptotically like
!�2 multiplied by a log-periodic function of ! with a
discrete scaling factor of approximately 515. The calcula-
tion of its Wilson coefficient requires the numerical solu-
tion to a three-body problem.

The short-time OPE can be applied to other operators to
derive sum rules and high-frequency tails for the associated

spectral functions. The OPE for c y
� and c � provides

universal information about the spectrum of single-particle

excitations. The OPE for density operators c y
�c � provides

universal information about the spectrum of density fluc-
tuations. The OPE for two stress tensors provides con-
straints on the spectral functions that determine transport
coefficients, such as the viscosity.

Universal relations involving the contact provide
nontrivial examples of aspects of many-body physics that
are controlled by few-body physics. The OPE reveals
these aspects by expressing observables in terms of
Wilson coefficients that are determined by few-body phys-
ics. Of the known universal relations, most have been
derived from the analytic solution to the two-body prob-
lem, but one has been derived from the solution to the
three-body problem [22]. The derivation of new universal
relations from numerical solutions to the three-body and
higher few-body problems presents an interesting
challenge.

This research was supported in part by the Army
Research Office and the Air Force Office for Scientific
Research and by the Department of Energy.
Note added.—The contact has recently been measured in

experiments with ultracold 6Li atoms [23] and 40K atoms
[24]. Several of the universal relations involving the con-
tact have been verified experimentally.
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