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We discuss techniques to generate long-range interactions in a gas of ground state alkali atoms, by

weakly admixing excited Rydberg states with laser light. This provides a tool to engineer strongly

correlated phases with reduced decoherence from inelastic collisions and spontaneous emission. As an

illustration, we discuss the quantum phases of dressed atoms with dipole-dipole interactions confined in a

harmonic potential, as relevant to experiments. We show that residual spontaneous emission from the

Rydberg state acts as a heating mechanism, leading to a quantum-classical crossover.
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There is currently significant interest in the physics of
dipolar quantum degenerate gases [1]. Strong long-range
dipole-dipole interactions promise the realization of novel
many-body phases in neutral gases, such as self-assembled
crystals [2], topological superfluids and quantum phases
with hidden topological order [3]. The regime of strong
dipolar couplings is easily accessible with interacting elec-
tric dipole moments, as realized, in particular, in quantum
gases with polar molecules prepared in their rovibrational
ground state [4]. In contrast, quantum gases of ground state
atoms typically interact via the much smaller magnetic
interactions [5]. The question, therefore, is to what extent
this regime of strong dipolar interactions can also be
realized with present atomic gases experiments with alkali
atoms. Here we propose and investigate a setup where the
huge electric dipole moments d� n2 [6–8] of atomic
Rydberg states with principal quantum number n are
weakly admixed to the atomic ground state, thus providing
an atomic gas of interacting effective electric dipoles com-
parable to the case of polar molecules. A central question,
and the main difference to the molecular case, is decoher-
ence and heating mechanisms associated with spontaneous
emission from Rydberg states, and possible inelastic colli-
sions. Below we show that (i) dipolar crystals can be
realized with Rydberg-dressed atoms confined to two di-
mensions, with negligible collisional losses, and
(ii) spontaneous emission �r provides an intrinsic heating
mechanism, allowing the study of thermalization phe-
nomena with full tunability of system parameters. We
study the associated crystal melting with molecular dy-
namics calculations.

The setup we have in mind is illustrated in Fig. 1: we
propose to weakly couple with laser light the ground state
jgi of each atom to a Stark-split Rydberg state jri with
large dipole moment d0 in the kilodebye range. For large
enough detuning � from resonance and interparticle dis-
tances, interactions are of the dipole-dipole type V3D

int /ð�=�Þ4d20=r3, with� the Rabi frequency. By confining the

particles to a 2D plane using an optical field, the effective
in-plane interactions V2D

int are then purely repulsive, with

negligible collisional losses. This opens the way to the
study of the many-body phases of 2D dipoles in these
systems. As an illustration, we show the existence of
mesoscopic supersolids and crystals with Rydberg-dressed
bosonic atoms under realistic conditions of in-plane har-
monic confinement, using exact quantum Monte Carlo
simulations. Residual spontaneous emission �eff �
ð�=�Þ2�r from the Rydberg state introduces an intrinsic
heating mechanism, driving the quantum phases into the
classical regime. We study the quantum-classical crossover
by means of molecular dynamics simulations, and show
the emergence of a dynamical thermalization time scale in
these systems.

FIG. 1 (color online). (a) Sketch of the energy levels constitut-
ing the Stark fan of an alkali metal atom exposed to an electric
field. jgi and jri are coupled by a laser with Rabi frequency �
and (blue) detuning �. �r is the spontaneous emission from jri,
with momentum @kR of the photon recoil. (b) Born-
Oppenheimer potentials in the x-y-plane in the dressed picture.
R0 is the resonant Condon point. The effective interaction
potenti.al V3D

int ðrÞ is the higher-energy curve (thick line). Level

crossings occur for Rn < R0. Inset: blowup of V
3D
int ðrÞ (solid line)

compared to 1=r3 (dashed line).
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Effective interaction potentials with suppressed deco-
herence from atomic collisions and spontaneous emission
are obtained as follows. In the presence of a homogeneous
electric field (field strength F, oriented along ez) the en-
ergy levels of an alkali atom show the well-known Stark
structure [6]. We are interested in the highest-energy state
jri of a given manifold n (n1 ¼ n� 1 and n2 ¼ 0 the
parabolic quantum numbers) in the linear Stark regime,
with dipole moment well approximated by the hydrogenic
result d0 ¼ ð3=2Þea0nðn� 1Þ. Here, a0 is the Bohr radius
and e the electron charge. The state jri is energetically
separated from the next (lower lying) state in the manifold
by �En ¼ eð3=2Þa0nF, while adjacent manifolds remain
well separated by an energy �EIT � �En for F smaller

than FIT � 1
3n5

m2e5

128�3�3
0
@
4 (Inglis-Teller limit). In our scheme,

Fig. 1, each atom is effectively reduced to a two-level
system. Within the rotating-wave approximation, the
Hamiltonian governing the internal dynamics of two atoms
is given by

Hij ¼
X

k¼i;j

½�jgikhrj � ð�=2Þjrikhrj þ H:c:� þHint;ij;

(1)

with Hint;ij ¼ vijjriihrj � jrijhrj, the dipole-dipole interac-
tion vij¼Dð1�3cos2�ijÞjRi�Rjj�3�D�ijR

�3
ij between

two atoms at position RiðRjÞ, and D ¼ d20=ð4��0Þ. �ij is
the angle between the vector Ri �Rj and the dipole mo-

ment aligned parallel to the z axis. The interaction potential
for the dressed ground state atoms is the Born-
Oppenheimer (BO) energy surface that adiabatically con-
nects to the energy of the product state jgiijgij as � ! 1.

Here, we focus on the weak driving limit �<�. For blue
detuning �> 0, the ground state BO potential will be
approximately V3D

int ðRij;�ijÞ’D�ij=R
3
ij for Rij < R0, with

R0 ’ ðD=@�Þ1=3 a resonant Condon point with typical
values in the hundreds of nm, Fig. 1(b). Diabatic crossings
with different potential surfaces of the same and different
n manifolds leading to collisional two-body losses will oc-

cur for Rij < R0, at distances of order Rn ’ ðD=�EnÞ1=3
and RIT ’ ðD=�EITÞ1=3, respectively, with R0 >Rn �
RIT, reminiscent of blue-shielding techniques [2,9].

For Rij * R0, two-body diabatic losses are absent and

V3D
int ðRij; �ijÞ ’ ð�=�Þ4D�ij=R

3
ij. In this work we will fo-

cus on this parameter regime. This has two additional
advantages: (i) spontaneous emission rates are strongly
reduced to values �eff and (ii) effective interactions are
reduced to values compatible with trapping of atoms with
optical fields and confinement to low dimensions.

Collisional losses for Rij > R0 are linked to population

of the attractive part of the dipole-dipole interaction.
Sampling of this attractive part can be suppressed by
confining atoms to two dimensions using a tight (optical)
trapping along z, with harmonic frequency @!? ¼
@
2=ma2? >V3D

int ðRÞ, with m the atomic mass, and a? the

transverse harmonic oscillator length. The BO potential
is then purely repulsive in three dimensions: there is
an energy barrier between the long-distance repulsion
and the attractive short-distance regime. Residual
losses are linked to tunneling below this energy barrier,

and can be computed semiclassically as �coll ¼
!att exp½�cð�4Dm=@2�4a?Þ2=5�, with c a constant of or-
der unity, and !att the attempt frequency, of order of the
average kinetic energy in the gas. For Rij > R0 the effec-

tive dynamics is purely 2D, with interactions V2D
int ¼ð�=�Þ4D=�3 � ~D=�3, with � ¼ j�j, and � a vector in

the x-y plane.
Mesoscopic crystals with Rydberg-dressed atoms.—We

consider a setup where N bosonic dressed atoms are con-
fined to a 2D plane by applying a strong transverse trapping
field [2], e.g., a 1D optical lattice, and are aligned perpen-
dicular to the plane. We assume an additional in-plane
parabolic trap with frequency!, as realized in experiments
by a magnetic dipole trap, or a single site of a large spacing

optical lattice. Defining length and energy scales r0 ¼
ð ~D=m!2Þ1=5 and ~� ¼ m!2r20 ¼ ~D=r30 ¼ ðm3!6 ~D2Þ1=5, re-
spectively, the 2D Hamiltonian reads

H

~�
¼ XN

i¼1

�
� 1

2�2
@2

@�2
i

þ 1

2
�2
i

�
þX

i>j

1

j�i � �jj3
; (2)

where � � ~�=@! ¼ ðr0=‘Þ2 ¼ ðm ~D=@2‘Þ2=5 characterizes
the strength of the dipole-dipole interactions in the trap

with ‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!

p
the harmonic oscillator length. Equa-

tion (2) shows that � plays the role of an effective mass, a
control parameter that can be increased by increasing the
strength of interactions, or by compressing the trap.
For small � & 1, we expect the kinetic energy to domi-

nate, and the cluster to be in a weakly interacting superfluid
(SF) phase, while for � � 1 the kinetic energy becomes
negligible, and the system ground state should resemble
the classical crystalline (CC) configuration obtained by
minimizing the last two terms of Eq. (2). We estimate the
critical �c for the superfluid-crystal crossover by noting
that for a homogeneous system the corresponding transi-
tion occurs at rQM ¼ Dm=@2a ¼ 18� 4 [2,10], where

rQM represents the ratio of the dipolar interactions D=a3

to the kinetic energy @
2=ma2 with a the mean interparticle

distance. By rewriting �c ¼ ðrQMa=‘Þ2=5, and approximat-

ing a� ‘, we obtain the prediction �c ’ 3, which is essen-
tially N independent.
We determine the generic zero-temperature phase dia-

gram for trapped dipolar atoms by means of quantum
Monte Carlo simulations based on the continuous-space
Worm algorithm [11]. We find that for mesoscopic clusters
with N & 40 four different quantum phases exist: (i) a SF
for � 	 �c, (ii) a mesoscopic supersolid (MS) for � & �c,
(iii) a ring-shaped crystal (RC) for � * �c, and (iv) a CC
for � � �c. These phases are distinguished by measuring
the superfluid fraction �s and the radial density profile
gðrÞ: the SF and MS phases are superfluid with �s ¼ 1,
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while the RC and CC phases have �s ¼ 0; the SF has a flat,
featureless gðrÞ, while the MS, RC and CC phases have
significant density modulations. In the crystalline RC
phase, particles are arranged in concentric rings with a
fixed number of particles per ring. For small enough tem-
peratures, these rings are free to rotate independently of
each other. In CC, atoms are instead arranged at fixed
relative positions. Mesoscopic crystals have been also
found in excitonic materials in Refs. [12].

In the following we provide example results for N ¼ 13
atoms, which we found to display all general features of
mesoscopic clusters withN & 40. We find that forN � 40
the system resembles the homogeneous situation, with a
sharp crossover between SF and CC phases around �c.

Panels (a)–(d) in Fig. 2 are snapshots of the particle
density forN ¼ 13 and 1 
 � 
 20 in the four mesoscopic
phases described above. These results correspond to a low
enough temperature T 	 ~�, that they can be regarded as
ground state estimates. Panel (a) shows a SF for � ¼ 1with
a featureless density profile [see also gðrÞ in Fig. 3], where
the various particle probability clouds overlap. This over-
lap is directly connected to superfluidity [13], and consis-
tently we here measure �s ¼ 1. The emergence of a MS
phase for � ¼ 2:5 & �c is signaled by a distinguishable
density modulation in Fig. 2(b) (see also Fig. 3), combined
to a measured �s ¼ 1. We find that the superfluid proper-
ties are completely unaltered by the increased strength of
interactions with respect to the case � ¼ 1. This is quanti-
fied in the inset of Fig. 3 by measuring the statistics of
exchange cycles f in a many-particle path [13]: in a
superfluid, the probability f that n0 particles exchange is
finite for all n0 
 N, while in a crystal is approximately
zero. In the inset it is shown that f is finite and equal for
� ¼ 1 and 2.5, at corresponding low temperatures (i.e.,
same fractions of ~�).

For � * �c [panels (c)–(d)] we observe crystallization of
the atomic cloud, with �s ¼ 0 and finite density modula-
tions, consistently with the estimates above. In particular,
for � ¼ 5 we obtain a RC phase, with concentric, indepen-
dent rings [14], while for � ¼ 20 particles are arranged in
the CC configuration for N ¼ 13, with 4 particles at the
center, and 9 outside. This classical crystal, characterized
by large peaks in gðrÞ in Fig. 3, is found to be the ground
state configuration for all � * 20.
Effective heating.—The residual effective single-particle

spontaneous emission rate is �eff � ð�=�Þ2�r. In this
work, we focus on the case where after the spontaneous
emission the atom is found in jgi, and then instantaneously
redressed, which, neglecting population redistribution due
to blackbody radiation, is the relevant situation for n & 30
[15]. Spontaneous emission results in the release of a
photon, with momentum @kR and recoil energy ER, the
latter in the tens of kHz. For dipoles parallel to F, emission
will be preferentially along z, and ER will be absorbed by
the confining lattice potential with @!? > ER. However,
any finite component of the momentum @kxy of the emitted

photon in the x-y-plane will result in a random ‘‘kick’’ of
the atoms, which will ultimately translate into an effective
intrinsic heating rate for the many-body system. Time
scales for the formation of MS and small crystalline phases
(N & 10, � � 1) from a 2D SF with T 	 ~� can be esti-
mated as tf � @=~�, while large crystals (N � 10) will be

efficiently formed from a Mott insulator state at T ¼ 0 on
an in-plane triangular optical lattice [16], which is re-
moved while raising F, e.g., on a few hundred �s time
scale. We conservatively estimate the crystalline phases to
be observable up to an average ‘‘melting’’ time tm /
TM=ð�effERÞ, with TM the (classical) melting temperature
in the trap. We computed TM for all N < 30 by means of
molecular dynamics simulations for the 2D system in the
classical limit (� ! 1) [17]. By monitoring the behavior
of the specific heat and density-density correlations, we

FIG. 2 (color online). (a)–(d) Monte Carlo snapshots of the
density of particles in all mesoscopic phases for N ¼ 13 dipoles,
as a function of the effective mass �. (a) superfluid,
(b) supersolid, (c) ringlike crystals, and (d) classical crystal.

FIG. 3 (color online). Radial density profiles gðrÞ for the cases
of Fig. 2. Inset: statistics of computed particle exchanges f as a
function of the number of particles n0 participating to the
exchange for the cases of finite superfluid fraction � ¼ 1 and
2.5. In a superfluid, f is finite for all n0 
 N. The supersolid
phase with � ¼ 2:5 has finite density modulation (figure) and the
same f distribution of � ¼ 1 (inset).
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determine the value TM ¼ 0:4ð2Þ~�. This can result in char-
acteristic lifetimes of order of several milliseconds. For
example, for 87Rb atoms coupled to the Rydberg state (n ¼
20, n1 ¼ 19, n2 ¼ 0) with d0 � 1:45 kD, �r � 100 kHz,
ER ’ 25 kHz, with a (two-photon) Rabi-frequency
�=2� ¼ 100 MHz (e.g., a red- and a blue-detuned lasers
on the 5S-5P and 5P-jri transitions, respectively [7]),
�=2� ¼ 1 GHz and a DC field F ¼ 25 kV=m, for
!=2� ¼ 5 kHz we obtain r0 ’ 680 nm, � ’ 20, ~� ’
4ER, and tm * 5 ms. Schemes using microwave dressing
[18] achieve tm of hundreds ms.

We further investigated the melting dynamics.
Spontaneous emission was simulated by applying random

in-plane kicks to each particle with momentum @kxy ¼
ð2mERxy

Þ1=2, with fixed ERxy
& ER, at an average rate

�eff . Panels (a) and (b) in Fig. 4 show our results for ERxy
¼

0:5~� and 2:5~� as a function of time t, respectively, for N ¼
13 particles. Thin lines are single classical-dynamics tra-
jectories, while thick dashed lines are averages over many
trajectories. We find that the average energy Etot increases
linearly with time t, as expected. For the smaller ERxy

of

(a), the crystal melts roughly at the expected time tm (in
several spontaneous emission processes), while in (b) the
observed melting time teq is significantly longer than tm
(roughly one spontaneous emission). This stability is a
dynamical process: melting can occur only after the system
has reached thermal equilibrium. The latter is the time teq
at which the average potential energy Epot and kinetic

energy Ekin become equal and equipartition of energy
applies. teq, and thus the crystal lifetime, can be (much)

longer than tm.
The spatial structure of the crystalline phases (*�m)

can be imaged using, e.g., tightly focused beams [19].
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