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We have analyzed the spectral density of fluctuations of the energy flux through a mesoscopic

constriction between two equilibrium reservoirs. It is shown that at finite frequencies, the fluctuating

energy flux is not related to the thermal conductance of the constriction by the standard fluctuation-

dissipation theorem, but contains additional noise. The main physical consequence of this extra noise is

that the fluctuations do not vanish at zero temperature together with the vanishing thermal conductance.
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Fluctuation-dissipation theorem (FDT) [1] relates the
fluctuations of a dynamic variable generated at angular
frequency ! by an equilibrium statistical-mechanical sys-
tem to the dissipative part of the response function of this
system to the force conjugate to this variable at the same
frequency. This theorem is one of the main physical pre-
dictions of the ‘‘linear-response theory’’ of equilibrium
transport properties in statistical mechanics, and finds ap-
plications in practically all areas of condensed-matter
physics. The best known case of this theorem is the relation
between the electric conductance of a resistor expressed
through the Kubo formula [2] and the current noise gen-
erated by this resistor. This relation played an important
role in understanding macroscopic quantum dynamics of
superconducting structures, where the Josephson effect
provides a way of directly observing the quantum part of
current noise as predicted by the FDT [3]. More recently,
this theorem found applications within the studies of the
mechanisms of decoherence and noise in superconducting
qubits (see, e.g., [4]). From the perspective of the linear-
response theory, thermal transport represents a somewhat
special case, since temperature T (more precisely, the
temperature gradient), that acts as the force conjugate to
the heat current, does not correspond microscopically to
any dynamic degree of freedom. Nevertheless, it is fre-
quently assumed that the FDT also holds for heat transport
and relates the spectral density of the energy current Sð!Þ
and the heat conductance Gthð!Þ by (see, e.g., [5])

Sð!Þ ¼ @!T ReGthð!Þ cothð@!=2TÞ: (1)

This assumption is supported by the fact that at zero
frequency Eq. (1) reduces to the form

Sð0Þ ¼ 2T2Gthð0Þ; (2)

that follows directly from the fundamental thermodynamic
result for the magnitude of energy fluctuations. Here and
everywhere below, we define temperature T in energy
units.

The purpose of this work is to demonstrate explicitly
that the thermal FDTof Eq. (1) is not valid at nonvanishing
frequencies, at least as a general statement. To do this, we

calculate the spectral density Sð!Þ of the fluctuations ~J ¼
J � hJi of the energy current J [6]:

Sð!Þ ¼
Z

dte�i!t½~JðtÞ~Jð0Þ þ ~Jð0Þ~JðtÞ�=2; (3)

in the setup characteristic for a ‘‘mesoscopic’’ measure-
ment of heat transport; see Fig. 1. We consider two reser-
voirs, equilibrated to, in general, different temperatures
T1;2, and weakly coupled by a constriction that supports

propagation of excitations that carry energy between the
reservoirs. Such a general setup describes both the heat
transport by phonons, e.g., in demonstrations of the quan-
tization of the phonon heat conductance [7], and also
various structures of ‘‘on-chip cryogenics’’ [8] where the
heat is transported by electrons or photons [9,10]. The
special status of the temperature T as a parameter in the
density matrix of the system, instead of being a dynamic
variable, creates a problem for the microscopic definition
of thermal conductance. The system Hamiltonian should
have the property of maintaining local thermal equilibrium
required for the temperature and the corresponding thermal
bias to be well defined, while at the same time creating the
nonvanishing energy flux through the system (see, e.g., the
discussion in [11]). An important feature of the mesoscopic
setup considered here (Fig. 1) is that this problem is
resolved naturally by clear separation of the two processes.
Temperature-defining equilibrium is maintained inside the
reservoirs, while the energy flux is created by weak per-
turbative coupling between them.

FIG. 1. Schematics of a generic constriction admitting energy
current J between two equilibrium reservoirs with temperatures
Tj and chemical potentials �j, j ¼ 1; 2.
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Quantitatively, we first treat the case of phonon heat
transport. (With some minor modifications, the same con-
siderations and results apply, obviously, to the photon heat
conduction.) We are interested in the regime of frequencies
or energies small on the scale set by the phonon propaga-
tion time along the constriction !, T=@ � 1=�tr, where
�tr ¼ l=v, with the sound velocity v and constriction
length l. In this low-frequency limit, the short constriction
does not lead to any reflection resulting in ballistic propa-
gation of phonons. The simplest description of the energy
transport by such ballistic phonons in one transverse chan-
nel starts with the usual HamiltonianH of the field�ðxÞ of
the longitudinal one-dimensional (1D) phonons:

H¼
Z
dxhðxÞ; hðxÞ¼1

2
f�½ _�ðxÞ�2þ�½�0ðxÞ�2g; (4)

where � and � are the density and compressibility of the

constriction, so that v ¼ ð�=�Þ1=2. Writing the Heisenberg
equation of motion for the energy density h in the form of

the continuity equation, _hþ J0 ¼ 0, one obtains the fol-
lowing expression for the operator of the energy flux J
carried by phonons (see, e.g., [12]):

J ¼ ��

2
½ _��0 þ�0 _��:

The usual mode expansion of the field �,

�ðxÞ ¼
�

@

2L�

�
1=2X

k

ðakeikx þ H:c:Þ=!1=2
k ;

where !k ¼ vjkj and L is a normalization length, gives

J ¼ @v

2L

X
k;p

ð!k!pÞ1=2 sgnðkÞðak � ayk Þðayp � apÞ: (5)

(Since none of the quantities we consider below depend on
x in the small-�tr limit after thermal averaging, we set x ¼
0 in this expression.) Averaging J over the equilibrium
states of the phonon modes, and taking the appropriate
limit L ! 1, one obtains the average energy current:

hJi ¼
Z 1

0

dEE

2�@
½n1ðEÞ � n2ðEÞ� ¼ �

12@
ðT2

1 � T2
2Þ; (6)

where njðEÞ is the Bose distribution at temperature Tj.

Expansion of Eq. (6) in small temperature difference �T,
T1;2 ¼ T � �T=2, gives the standard expression for the

‘‘quantum’’ of heat conductance of one phonon channel,
Gth ¼ �T=6@. The point of our derivation here is that
Eq. (6) remains valid even if the temperatures T1;2 and,

correspondingly, the probability distribution functions of
the phonons incident on the constriction vary in time with
frequencies less than 1=�tr. This means that the resulting
expression for the heat conductance Gth is also valid for all
frequencies in this range.

Next, substituting the operator J given by Eq. (5) into
Eq. (3) and repeating the same steps that lead to the
average energy current (6), we obtain after some algebra
the spectral density of the energy flux noise:

Sð!Þ ¼ 1

8�@

X
�;j

Z
dEEðE��Þ½1þ njðEÞ�njðE��Þ;

� � @!. This expression generalizes to finite frequencies
previous results for the noise in phonon heat transport (see,
e.g., [13]). Taking the integral, we get

Sð!Þ ¼ 1

48�@

X
j

½ð2�TjÞ2 þ�2��coth
�

2Tj

: (7)

One can see that even in equilibrium, T1 ¼ T2 � T, the
spectral density (7) is different at � � 0 from the one
predicted by the FDT, see Eq. (1), with the conductance
Gthð!Þ ¼ �T=6@. The FDT reproduces only the first part
of Eq. (7) that corresponds to the T2 term in the brackets. In
addition to this, the full result (7) contains the�2 term that
is nonvanishing, Sð!Þ ¼ @

2j!j3=ð24�Þ, even at T ¼ 0,
when the heat conductance is zero. Physically, the origin
of this extra term can be traced back to finite coupling
between the reservoirs, which creates quantum fluctuations
of their energy even at T ¼ 0, when the thermal conduc-
tance in the FDT relation (1) vanishes since there are no
real excitations that could irreversibly transfer energy be-
tween the reservoirs. In this respect, the violation of the
FDT for the heat transport discussed in this Letter has the
same origin as several other effects of finite relaxation
energy discussed in the literature [14–16].
This qualitative picture implies that the breakdown of

the FDT for heat transport is not a specific feature of the
phonon heat conduction, but is quite general. To demon-
strate this, we consider a similar setup of two weakly
coupled reservoirs but in the situation when the heat con-
ductance is due to electron propagation between them. The
main difference with the phonon case is that the reflection
in the constriction can be non-negligible for electrons even
when the traversal time �tr is very short on the scale set by
other energies in the problem. The calculation of the finite-
frequency heat transport by electrons follows the same
steps as in the case of phonons. The operator of energy
density hðxÞ of 1D electrons can be written in terms of the
electron field c ðxÞ and the single-particle Hamiltonian

ĥ ¼ �ð@2=2mÞ@2=@x2 þ VðxÞ as
hðxÞ ¼ ½c yĥc þ ðĥc yÞc �=2: (8)

The symmetrized expression (8) is needed to ensure that
hðxÞ is Hermitian. Then, the Heisenberg equation of mo-
tion for hðxÞ with the Hamiltonian H ¼ R

dxhðxÞ takes the
form of the continuity equation, _hþ J0 ¼ 0, with the
energy flux operator

J ¼ ð�i@=4mÞ½c yðĥc Þ0 � ðc yÞ0ĥc � H:c:�: (9)

This expression shows that if one decomposes the field c
into the stationary scattering modes, the energy current has
the same form as the usual probability current, the only

difference being that ĥ multiplies each mode by its energy.
This means that its fluctuations can be calculated in the
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same way as for electric current [17–19]. Explicitly, in-

troducing the creation or annihilation amplitudes ayk ; ak for
electrons incident from one electrode, and byk ; bk from the

other, we obtain the following mode expansion of J:

J¼vF

L

X
k;p

�kþ�p
2

½Dðayk ap�byk bpÞþ
ffiffiffiffiffiffiffiffi
DR

p ðayk bpþbyk apÞ�:

(10)

Here vF is the Fermi velocity, D and R are, respectively,
the transmission and reflection probabilities of the con-
striction, Dþ R ¼ 1, and �k;p are the electron energies.

Also, we assume that both the Fermi energies in the
electrodes and @=�tr are much larger than the typical
excitation energies T, �, and eV, where V is the bias
voltage between the electrodes. This implies, in particular,
that the scattering probabilities D;R are constant in the
energy range of interest. The energy current J in Eq. (10)
corresponds directly to the heat flow into or out of the
reservoir j, if the electron energies �k;p are measured in

Eq. (10) relative to the chemical potential �j of this

reservoir. (Note that in the phonon calculation above, this
condition was satisfied automatically, since � ¼ 0 for
phonons.) If V ¼ 0, so that there is no shift between the
chemical potentials of the two electrodes, the average of
Eq. (10) represents both the heat flow, �J1, out of one
electrode and the heat flow, J2, into the other one:�hJ1i ¼
hJ2i ¼ hJi. The total average generated heat is zero, hJ1 þ
J2i ¼ 0. If, however, V � 0, then one needs to measure the
energies relative to the two different levels �1 and �2 in
the two reservoirs, and �hJ1i � hJ2i. The difference be-
tween the two heat flows is obtained by replacing the
energy ð�k þ �pÞ=2 in Eq. (10) with �1 ��2 ¼ eV.

After this substitution, Eq. (10) reduces to IV, where I is
the electric current between the reservoirs. Therefore, in
the case of nonvanishing bias voltage V, the total generated
heat is nonvanishing and equal to the Joule heat, hJ1 þ
J2i ¼ hIiV, where the individual heat flows Jj are obtained
from Eq. (10) by measuring the energies �k;p relative to the

chemical potential �j of the corresponding electrode.

Taking thermal average and the limit L ! 1 in Eq. (10),
we find the average heat currents

hJji ¼ ð�1Þj D

2�@

Z
dEðE��jÞ½f1ðEÞ � f2ðEÞ�

into the two electrodes, where fjðEÞ is the Fermi distribu-

tion of electrons in the jth reservoir, j ¼ 1; 2. This gives

hJji ¼ D

2�@

�ðeVÞ2
2

þ ð�1Þj �
2

6
ðT2

1 � T2
2Þ
�
: (11)

The two terms in this expression represent, respectively,
the usual Joule heating, which in this case is distributed
equally between the electrodes, and the heat transport
between them. For small temperature difference between
the electrodes, Eq. (11) gives the thermal conductance,

Gth ¼ �DT=6@, that coincides with the phonon conduc-
tance. As with the phonons, an important point here is that
this thermal conductance is independent of frequency in
the considered frequency range below 1=�tr and the fre-
quencies set by the Fermi energies in the electrodes.
At V � 0, when the total heat fluxes into the two elec-

trodes are different due to Joule heating, to describe spe-
cifically the heat transfer between the electrodes, one needs
to define the heat current as J ¼ ðJ2 � J1Þ=2. Indeed, as
one can see from Eq. (11), the average heat current hJi
defined this way is not affected by the Joule heating. This
definition corresponds to the simple prescription of mea-
suring all energies in Eq. (10) relative to the midpoint
between the chemical potentials of the two electrodes.
Then, the same steps as for the average current, including
thermal averaging and the L ! 1 limit, give for the spec-
tral density of the heat current noise

Sð!Þ¼ D

4�@

X
�;j

Z
dEðE��=2Þ2fDfjðEÞ½1�fjðE��Þ�

þRfjðEÞ½1�fj0 ðE��Þ�g; (12)

where j0 is defined as j0 � j with j; j0 ¼ 1; 2. One can see
that without the bias voltage and reflection, V ¼ 0, R ¼ 0,
Eq. (12) coincides with the phonon result (7). For equal
temperatures of the electrodes, Eq. (12) gives

Sð!Þ ¼ D

48�@

�
2D½�2 þ ð2�TÞ2 þ 3ðeVÞ2��coth

�

2T

þ R
X
�
½ðeV ��Þ2 þ ð2�TÞ2�ðeV ��Þ

� coth
eV ��

2T

�
: (13)

This result [as well as Eq. (7) for the phonons] can be
extended naturally to the situation when the contact be-
tween the electrodes supports many electron modes with
transparencies Dk. In the equilibrium case that is of main
interest here, Eq. (13) gives the following expression for
the heat noise in such a multimode contact:

Sð!Þ ¼ ðG=12e2Þ½�2 þ ð2�TÞ2��cothð�=2TÞ: (14)

Here G ¼ P
kDke

2=ð2�@Þ is the electric conductance of
the contact, which is related by the Wiedemann-Franz law
to the heat conductance Gth ¼ �2GT=ð3e2Þ.
One of the interesting physics features of Eq. (13) in the

case of nonvanishing V and R is the shot noise of the
energy current associated with the individual electron scat-
tering events. Similar shot noise of heat was discussed for
quantum pumps in [20]. Energy currents carried by indi-
vidual electrons were also demonstrated recently in the
form of rf cooling in a metallic single-electron transistor
with an alternating voltage at the gate [21]. Equation (13)
shows that in a biased contact, the average heat current is
accompanied by shot noise of heat due to the scattering of
discrete electrons. Quantitatively, the same multimode
generalization of (13) gives this noise for jeVj � T;� as
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SðVÞ ¼ eFGjVj3=12; (15)

where F ¼ P
kDkð1�DkÞ=

P
kDk is the standard Fano

factor that characterizes the shot noise of electric current.
Returning to Eq. (14) and quantum fluctuations of heat,

we see again that, similarly to the situation with the phonon
heat conductance, equilibrium fluctuations of the heat
current are not described correctly by FDT at finite fre-
quencies. While the heat conductance of the contact is
frequency independent in the range discussed above, the
noise contains a frequency-dependent part which does not
vanish at T ¼ 0 together with the heat conductance.
Physically, these fluctuations are produced by virtual elec-
tron transitions between the two electrodes due to finite
coupling between them. This mechanism is the same as for
the quantum fluctuations of electrical current in the con-
tact, and Eq. (13) for the energy fluctuations is quite similar
to the corresponding equation for the current fluctuations.
The fact that the quantum fluctuations of electric current
are still consistent with the FDT, in particular, they vanish
together with the electric conductanceG, while the thermal
fluctuations do not agree with FDT, is a reflection of the
special nature of temperature in statistical mechanics.

As the last point of our discussion of the thermal FDT,
we would like to make more explicit the set of assumptions
underlying the notion of the frequency-dependent thermal
conductanceGthð!Þ. We do this in the case of electron heat
transport considered above, limiting the discussion to the
tunnel approximationD � 1, when electron scattering can
be described with the usual tunnel Hamiltonian

H¼H1þH2þHT; HT ¼
X
k;p

ðTkpa
y
k bpþH:c:Þ; (16)

which explicitly separates the Hamiltonian of the elec-
trodes H1;2 and the tunneling term HT . Here Tkp are the

tunneling amplitudes that can be expressed through the
junction conductanceG. The heat flow defining the thermal
conductance at finite frequencies should be driven by a
small time-dependent temperature difference �TðtÞ.
Separating one frequency !, we take T1;2 ¼ T �
ð�T=2Þe�i!t. Expansion of the density matrix of the equi-
librium electrodes in �T � T gives the �T-induced cor-
rection �� to it as

��ðtÞ ¼ ��0Qð�T=2T2Þe�i!t: (17)

Here �0 ¼ ð1=ZÞe�ðH1þH2Þ=T is the main part of the density
matrix and Q ¼ Q0 � hQ0i, with Q0 � H2 �H1 and h� � �i
denoting the average over �0. We note that the assumption
of equilibrium with the time-dependent temperature re-
quires that ! � 1=�E, where �E is the relaxation time in
the electrodes. This condition is not satisfied directly in the
model of noninteracting phonons or electrons for which we
calculated the energy flux noise Sð!Þ. One can still use
Eq. (17) for the noninteracting particles incident on the
junction, assuming that the temperature-defining relaxa-
tion is concentrated infinitely deep inside the electrodes.
The usual perturbation theory in HT around �� (17) then

gives

Gthð!Þ ¼ i

2@T2

Z 1

0
dtei!thJðtÞHTQ�QHTJðtÞi; (18)

where the energy flux operator is

J ¼ _Q=2 ¼ ði=2@ÞX
k;p

ð�k þ �pÞðTkpa
y
k bp � H:c:Þ:

The equation for the thermal conductance similar to (18)
can also be derived in a general situation, when the heat
current is driven by some arbitrary relaxation interaction V
(and not the tunnelingHT). Formally, the breakdown of the
FDT for the heat transport discussed in this Letter arises
from the difference between the structure of Eq. (18) and
expressions for the ‘‘dynamic’’ linear-response coeffi-
cients, e.g., the electric conductance. Explicitly, evaluating
(18) we get ReGthð!Þ ¼ �2GT=ð3e2Þ, which is frequency
independent in agreement with the arguments provided
above, and in contradiction to the FDT (1), if compared
with the energy flux noise (14).
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