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Zero-Transmission Law for Multiport Beam Splitters
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The Hong-Ou-Mandel effect is generalized to a configuration of n bosons prepared in the n input ports
of a Bell multiport beam splitter. We derive a strict suppression law for most possible output events,
consistent with a generic bosonic behavior after suitable coarse graining.
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The Hong-Ou-Mandel (HOM) effect [1] is an impressive
manifestation of the bosonic quantum nature of photons. In
the original experiment, two identical photons are sent
simultaneously (within their coherence time) through the
two input ports of a balanced beam splitter. Since no
interaction between the photons takes place, one would
intuitively expect the photons to propagate independently
and not presume any correlations in the number of photons
measured at both output ports. Surprisingly, the photons
always leave the setup together, but never exit at different
ports. Such coincident events at both output ports are
completely suppressed.

This effect is used in many applications: The visibility of
the dip in the coincident detection rate provides a charac-
terization for the indistinguishability of two photons [2,3],
and therewith for the quality of photon sources. HOM
setups are used to project photons onto the maximally
entangled |¥~) Bell state, and, consequently, to both
create and detect such states [4]. This is used, for example,
in entanglement swapping protocols [5] and quantum met-
rology [6]. Furthermore, the nondeterministic gate opera-
tions in linear optics quantum computation [7] are based on
the HOM effect.

It is suggestive to generalize the HOM setup for more
than two photons and more than two input or output ports.
Indeed, the enhancement of events with all particles in one
port—bunching events—has been observed experimen-
tally when several photons enter each of the two modes
of an unbiased (i.e., balanced) two-port beam splitter [8,9].
For a specially designed biased setup of three particles and
three input ports, the suppression of coincident events was
shown [10]. In the case of a Bell multiport beam splitter
[11,12] which redistributes n incoming particles to n ports
in an unbiased way, it is known that coincident events are
suppressed when 7 is even [13].

All these results imply important applications, from the
creation and detection of multipartite qudit-entangled
states [14,15], over the implementation of entanglement
swapping protocols for many particles and the design of
efficient quantum gates for qudits [16], to the experimen-
tally controlled transition from indistinguishability to dis-
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tinguishability for many identical particles [17]. However,
we still lack a comprehensive understanding of the
n-particle, n-port generalization of the HOM effect, since
the complexity of such a scattering problem scales very
unfavorably with n: The number of interfering amplitudes
as well as that of possible output events grow faster than
exponentially. Hence, a detailed analysis of individual out-
put events is prohibitive, and needs to be substituted by
statistical considerations.

This is the purpose of the present Letter, where we
present a general study of the probabilities of all possible
output events of the Bell multiport beam splitter. Our
treatment enables a general understanding of multiparticle
interference effects, as well as on the average behavior of
bosons. It hence unifies previous experimental and theo-
retical work on multiport beam splitters, and opens up new
perspectives for the experimental verification and exploi-
tation of bosonic multiparticle behavior.

In the following we denote arrangements of n particles
in the n modes by a vector § = (sy, 55, ..., 5,), with s, the
number of particles in the output mode k, and >, s; = n.
For distinguishable, noninterfering particles the probabil-
ity for a certain arrangement s reads

1 n!

Pass(5) = — =——.
Class( ) " ;!:1 sj!

ey

We call this situation “‘classical’, since, due to the lack of
interference between the particles, probabilities are
summed instead of amplitudes, and simple combinatorics
applies. Hence, coincident events, i.e. 5, = (1,1,...,1),
are realized with probability n!/n". Bunching events,
with all particles at one output mode k, correspond to s, =
n and thus to 5, = (0,0,...,n,...0). They are realized
with probability 1/n" and, hence, suppressed by a factor
of n! with respect to the coincident events. For large n, both
events are highly unlikely, extreme cases.

The analogous problem with identical quantum particles
is best formulated in second quantization. Since applica-
tions of our study are feasible with today’s optical tech-
nologies [11], we focus here on bosons with the following
commutation relations for the creation and annihilation
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operators for the respective ports:
[a;, &JT] = dij, [a; a;]1= [a, &}] =0 @

The initial state reads |¥) = [T, at10). Input port crea-
tion operators fz;r are mapped to output creation operators
IQZT via a unitary matrix U [18], such that l;;f =
iU jk&z- Formally, the unbiased Bell multiport beam
splitter under consideration corresponds to the unitary
operation given by the Fourier matrix, defined for any
dimension n by U, = @mi/mU-D&=1/ fq.

The possible states with fixed particle number per port
after the scattering process read

() = (]‘[

j=1

(b* o )|0> 3)

In order to describe the event probability of a given ar-
rangement §, we define a vector d of length n with entries
that specify each particle’s output port. It is constructed by
concatenating s; times the port number j:

d=e"_ &, (), )

e.g., for the arrangement 5§ = (2, 1, 0, 2, 0), we find c_z’)(E) =
(1,1,2,4, 4). Therewith we can write the transition proba-
bility to a specific output arrangement §

qu(§)=|<\1'|®(§)>|2—1_[ Z l—[Ud $),0() | - (5
j g€P, j=1

where P,, denotes the set of all permutations of {1, ..., n}.
For coincident output states, we have d;(s.) = j; i.e., the

overlap (5) becomes the permanent of the matrix U
[19,20]. The best known algorithm to compute the ampli-
tude (5) scales exponentially in n [21]. In information-
theoretic terms, the evaluation hence remains an NP-
complete problem [14], despite the symmetry of U.

Notwithstanding the apparent complexity of the prob-
lem, it is possible to exploit the symmetry of the matrix U
to formulate a powerful law (with its proof given in the
appendix): Events characterized by § are strictly sup-
pressed if the sum of vector-components d,(5) is not divid-
able by n:

() = Mod(i d(3), n) # 0= (V|®(E)=0. (6)
=1

Consider, e.g.,n = 6 and 5, = (2, 1,2, 1,0, 0): One imme-
diately finds Q(5,) = 2, and this event is hence strictly sup-
pressed. Unexpectedly though, the event §, = (0, 1, 2,0,
2, 1), which is obtained from §; by simple permutation,
gives Q(5,) = 0, and is actually enhanced by a factor
larger than 7 as compared to the classical event probability
(also see Table II). Note that the evaluation of (6) scales
linearly with n, and that—as shown below—our suppres-
sion law applies for most output arrangements. It thus
largely characterizes the general statistical behavior of

the Bell multiport beam splitter, in a easily evaluable
manner.

For a more detailed insight in the predictions of Eq. (6),
we first have to identify classes of final states that occur
with equal probability. In the classical case, the realization
probability of any arrangement § remains invariant under
permutation of the output ports s,. Hence we can define
classical equivalence classes which identify arrangements
related to each other by permutation. The amplitude (5),
however, is not invariant under arbitrary permutations of
the s;; i.e., two classically equivalent arrangements are not
necessarily quantum mechanically equivalent. Only cyclic
and anticyclic permutations leave Egs. (5) and (6) invari-
ant. This allows us to define a quantum equivalence rela-
tion between arrangements, and the associated quantum
equivalence classes. To estimate the number of suppressed
arrangements that are predicted by (6), let us assume that
the Q(5) are uniformly distributed in the interval
[0,...,n — 1] for the ensemble of events 5. Then the
probability to find a suppressed arrangement is given by
the weight of nonvanishing values of Q(5), i.e., by (1 —
n)/n =1 — 1/n. The number of equivalence classes and
the number of suppressed output arrangements, shown in
Table I, for n =2,...,14, also confirm this scaling
numerically.

The unsuppressed arrangements are listed in Table II, for
n=2...,6, together with their quantum enhancement,

e., the ratio of quantum-to-classical event probability.
The suppression of coincident events for even n derived
in [13] is covered by Eq. (6) as a special case: For such
events, c_i)(fc) =(1,2,3,...,n); hence 3 d;(5) =
n(n + 1)/2 is never dividable by n for even n.

The implications of Eq. (6) are rather counterintuitive.
On the one hand, bunching events are enhanced by a factor
of n! with respect to the classical case, as expected due to
the bosonic nature of particles: This favors states with

TABLE I. Number of classical equivalence classes (Nj),
quantum equivalence classes (Ngyanum)> Classes that therewithin
fulfill the law (6) (N}, ), and suppressed classes which are not
predicted by (6) (Ngypp)-

n Nclass Nquantum N]aw Nsupp
2 2 2 1 0
3 3 3 1 0
4 5 8 5 0
5 7 16 10 0
6 11 50 38 2
7 15 133 105 0
8 22 440 371 0
9 30 1387 1201 0
10 42 4752 4226 96
11 56 16 159 14575 0
12 77 56822 51890 1133
13 101 200474 184 626 0
14 135 718 146 666114 2403
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TABLE II. Nonsuppressed output states, together with the
corresponding quantum enhancement; i.e., the ratio of quantum
to classical event probability.

n s Enhancement
3 (003) 6
(111) 3/2
4 (0004) 24
(0202), (0121) 8/9
5 (00005) 120
(00131), (01 103) 15/2
(00212), (01022) 10/3
(11111) 5/24
6 (000 006) 720
(002004), (000 141),
(010104), (000 303), 144/5
(001 032), (000222)
(020202), (001 113), (012021) 36/5

many particles in few occupied ports. On the other hand,
the number of particles in one port, or the number of
occupied ports is not a direct indicator for the enhancement
or the suppression of a certain event. For example, one
intuitively expects events of the type §= (n—
1,1,0,...,0) to be enhanced due to the bosonic nature of
the particles, while they actually turn out to be strictly
suppressed. Thus, at the level of the event probabilities of
single arrangements, interference effects dominate, and the
bosonic nature of the particles is not apparent at all.

It is, however, possible to recover a general bosonic
behavior by grouping many final arrangements in larger
classes which are characterized, e.g., by the number of
occupied ports k, or by the number m of particles in one
port. The event probability for such a class is given by the
sum of the probabilities of the single events that pertain to
the class. Very generally, one expects that, for bosons,
quantum states with large occupation numbers are favored.
This general behavior is also reflected by our formalism:
According to (5), the probabilities Py, (s) are given in
terms of a sum over permutations of scattering amplitudes,
i.e., over complex numbers of equal modulus (products of
matrix-elements of Uj). Since these numbers typically
have different phases, they tend to add up destructively.
However, all s;! permutations o that interchange the s;
particles that exit in port j leave the scattering amplitudes
invariant, so that s;! terms in the sum have equal phases
and add up constructively. This motivates the following
approximation for the transition probability (5):

(nj S./‘!)Pclass(E)
Z?(nj rj!)Pclass(;) '

We show the probability distribution for the number of
occupied ports, for the classical calculation (1), for the
bosonic quantum case (5), and for our approximation (7),
for n = 14, in Figure 1. The distributions’ expectation
values correspond to the average number of occupied ports.

(7
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FIG. 1 (color online). Event probability for a given number of
occupied ports, for n = 14. (Red) rectangles denote classical
combinatorics, (blue) triangles the quantum mechanical proba-
bility distribution, and (black) circles our (bosonic) estimate for
the quantum result. The inset shows the same distribution on a
linear scale. Note that events with 14 occupied ports are strictly
suppressed in the quantum case.

This value can be shown to grow linearly with the number
of particles n. However, the growth rate in the bosonic case
is approx. 0.50, smaller than the value of approx. 0.63
found in the classical case. As expected, bosons always
tend to occupy less output ports than in the classical case,
for any n. Furthermore, Figure 1 shows that the approxi-
mation (7) predicts the actual outcome very well for most
k, and only fails for events with almost all or almost no
sites occupied. This is easily understood, since, for very
small or very large k, few distinct equivalence classes
contribute to these event groups. Then, again interference
dominates the event probability, rather than bosonic be-
havior. Therefore, a few general suppression effects that
follow from (6) persist at this level, for extreme values of k:
Events with n — 1 occupied ports are suppressed for odd n,
coincident events are forbidden for even n. If n is prime,
there will be never exactly two occupied ports 7, j: The sum
in (6) then becomes k - i + (n — k)j with k the number of
particles in port i. The result is never dividable by n for
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FIG. 2 (color online). Quantum enhancement as a function of
the number of particles (vertical axis), and of the number of
occupied ports (horizontal axis).
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FIG. 3 (color online). Probability to find exactly k particles
(horizontal axis) in one port, for n = 14. (Red) rectangles denote
the classical, (blue) triangles the quantum calculation, and
(black) circles the estimate (7). The inset shows the distribution
on a linear scale for small k. Note that events with 13 particles in
one port are totally suppressed in the quantum case.

0 < k < n. These effects and the quantum enhancement of
the classes with k occupied ports are visualized in Fig. 2.

Also the event probability for a given number of parti-
cles in one single port is well described by our estimate (7).
For 14 particles, the probability distribution is shown in
Figure 3. Again, we see a dramatic difference between the
classical and quantum case, especially for the probability
to find a large number of particles in one port.

We have generalized the HOM effect to n particles and n
ports on two different levels: Interference effects inhibit
the realization of most possible events for single transition
amplitudes, while general statistical characteristics with
smooth bosonic behavior emerge that are efficiently ap-
proximated by Eq. (7). On the fine as well as on the coarse
grained scale, however, quantum and classical transmis-
sion probabilities differ dramatically.

In order to verify our above theoretical findings, and to
statistically characterize the indistinguishability of many
photons, single-photon counting detectors are required in
the experiment. Since such detectors are not standard
equipment yet, let us stress that also a more coarse grained
measurement with bucket detectors which do not count the
number of simultaneously arriving photons exhibits a
strong quantum signature in the event statistics, as clearly
spelled out in Figure 1.

Appendix.—Each of the n! terms in the sum in Eq. (5)
can be written as an nth root of unity. Hence, Eq. (5) turns
into Y'7=) c,e®7/Mk where the ¢, are natural numbers
which give the cardinality of the following sets, defined
in analogy to [20],

0 (§) = {710,5(r) = > d(@)o() = r modnl,  (8)
=1

with ¢, = |u,(5)|. The sum corresponds to the position of
the barycenter of the set of points {c,e/®™/"k|k €
{1,...,n}} in the complex plane. We set Q=
mod (3.}, d,(5), n), and define an operation y which acts
on permutations such that y(o)(k) = o(k) + 1 modn. It is

immediate that 0, ;(y(0)) = 0, ;(0) + Q. Thus, if Q #
0, the repeated application of y gives us a bijection be-
tween all pairs of u,,.¢,fora €{0, 1,..., n — 1}. Hence,
we find

Vre{0...,n—1} VaEN: Cygop=c,. 9

Therefore, if Q # 0, the set of points {c,e/®™/"k|k €
{1, ..., n}} describes several interlaced polygons centered
at the origin, ensuring that the sum vanishes. On the other
hand, it is also possible for the barycenter of the structure
spanned by the ¢, to lie in the origin, even though the set of
points is not described by polygons. Therefore the reverse
of the law (6) does not hold.
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