PRL 104, 220403 (2010)

PHYSICAL REVIEW LETTERS

week ending
4 JUNE 2010

Spin Drag in an Ultracold Fermi Gas on the Verge of Ferromagnetic Instability

R. A. Duine,' Marco Polini,> H. T. C. Stoof,' and G. Vignale®
Unstitute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
2NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, 1-56126 Pisa, Italy

3Depatrtment of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
(Received 17 February 2010; revised manuscript received 19 April 2010; published 1 June 2010)

Recent experiments [Jo et al., Science 325, 1521 (2009)] have presented evidence of ferromagnetic
correlations in a two-component ultracold Fermi gas with strong repulsive interactions. Motivated by
these experiments we consider spin drag, i.e., frictional drag due to scattering of particles with opposite
spin, in such systems. We show that when the ferromagnetic state is approached from the normal side, the
spin drag relaxation rate is strongly enhanced near the critical point. We also determine the temperature
dependence of the spin diffusion constant. In a trapped gas the spin drag relaxation rate determines the
damping of the spin dipole mode, which therefore provides a precursor signal of the ferromagnetic phase
transition that may be used to experimentally determine the proximity to the ferromagnetic phase.
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Introduction.—Arguably the two most important phase
transitions in condensed matter physics are the supercon-
ducting and the ferromagnetic phase transition. The first
occurs for attractive interactions between distinguishable
fermions, causing formation of Cooper pairs that Bose-
Einstein condense, according to Bardeen-Cooper-
Schrieffer (BCS) theory. Within Stoner mean-field theory,
ferromagnetism is the result of strong repulsive interac-
tions between two spin species of fermions, that cause the
system to spin polarize to save interaction energy. Over the
past few years, the BCS transition has received a great deal
of attention in the context of ultracold atomic Fermi gases
[1,2], owing mainly to the use of Feshbach resonances to
tune the interactions between the atoms [3]. Having ex-
plored the regime of attractive interactions, scientific in-
terest has recently turned to the repulsive side of the
Feshbach resonance where itinerant ferromagnetism is
predicted to occur [4-8].

One of the most exciting developments is the very recent
observation of ferromagnetic correlations in a two-
component Fermi gas with strong repulsive interactions
by Jo et al. [9]. The probes used in these experiments, i.e.,
enhancement of kinetic energy and reduction of atom-loss
rate, are local probes and do not constitute conclusive
evidence for a ferromagnetic phase with nonzero sponta-
neous spin polarization. In part as a result of this, there has
been a lot of theoretical interest [10] in this experiment.

In this Letter we point out that spin drag [11,12], i.e., the
friction between two different spin states due to interac-
tions that was recently proposed in the context of semi-
conductors, provides a distinct experimental probe to
determine the proximity to the ferromagnetic state. Spin
drag effects lead to decay of spin currents, with a typical
spin drag relaxation rate due to interaction effects. The spin
drag relaxation rate determines the damping rate of the
spin dipole mode in trapped cold-atom systems [13] and is
thus accessible experimentally. Interestingly, an electronic
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analog of the spin dipole mode also exists [14]. Spin drag
in cold-atom systems was proposed very recently both for
fermionic atoms [13,15], and for bosonic ones [16]. In this
Letter, we show that the spin drag relaxation rate will be
strongly enhanced as the ferromagnetic state is approached
from the normal side. This enhancement in spin drag is
somewhat analogous to the enhancement of the Coulomb
drag resistivity [17] in electron-hole bilayers as one ap-
proaches the exciton-condensed state [18,19]. Although
conclusive evidence of exciton condensation in these sys-
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FIG. 1 (color online). Spin drag relaxation rate 1/744(T) as a
function of temperature 7, for various values of the interaction
parameter kra. The Fermi energy is denoted by ep = kpTg =
1?k%:/2m. Note that for kpa > 77/2, the spin drag relaxation rate
shows a distinctive upturn when the critical temperatures, in-
dicated by thin vertical lines, are approached from above. In
particular, we have T, =~ 0.43Tf for kpa = 1.9, T, =~ 0.36T% for
kgpa = 1.8, and T, =~ 0.27T for kra = 1.7. For kga < 7/2 no
ferromagnetism occurs within mean-field theory. In that case
1/74(T) is smooth throughout the temperature range and
exhibits the standard Fermi-liquid behavior 1/7(T) « T? for
T—0.
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tems is still lacking, two experimental groups [20,21] have U? 302
recently reported the observation of an upturn in the Aylg, ) =U + 7 X an(q, @) — TXSZSZ(% w), (3)

Coulomb drag resistivity as the temperature is lowered.

Our main findings are illustrated in Fig. 1. This plot
shows the spin drag relaxation rate 1/744(T) as a function
of temperature, for various interaction strengths deter-
mined by the product of the Fermi wave vector ky and
the scattering length a. The dramatic enhancement of the
relaxation rate upon approaching the critical temperature
for the ferromagnetic transition is clearly visible.

The enhancement of the spin drag relaxation rate as the
ferromagnetic phase is approached serves as a precursor
probe for ferromagnetism that is distinct from, and adds to,
the experimental methods of Jo ef al. [9], and is also
interesting in its own right. In the following we present
our calculations in detail, and present additional results and
discussion.

Spin drag relaxation rate—We consider a 3D homoge-
neous gas of fermionic atoms of mass m, with two hyper-
fine states denoted by | 1) and | |). The grand-canonical
Hamiltonian that describes the system well at the tempera-
tures and densities of interest is given by

A= [ Ezm}@ux)(— )t

U [@xdf @i @@, o

in terms of fermionic creation and annihilation operators
#1(x) and ,(x), respectively, and where w is the chemi-
cal potential. At low temperatures s-wave scattering, de-
scribed by U = darah? /m, dominates, and we have
therefore omitted other interaction terms from this
Hamiltonian.

We first determine a frequency and momentum depen-
dent scattering amplitude Ay (g, w) that takes into account
many-body effects on the scattering of atoms with opposite
spin. We use the generalized random-phase approximation
that consists of summing all “bubble’ diagram contribu-
tions to this effective interaction. This takes into account
modifications of the interaction due to density and spin
fluctuations in an approximate way that is sufficient for our
purpose of illustrating the effect of the proximity of the
ferromagnetic phase transition on the spin drag. Including
spin fluctuations is essential as they are strongly enhanced
close to the ferromagnetic phase transition. In terms of the
noninteracting (Lindhard) response function at nonzero
temperature

d3k Nq+k - Nk
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Xolg, @) =2 )

with &, = 7*k?/2m and N, = [e&#/kT 4 1171 the
Fermi-Dirac distribution function, the scattering amplitude
reads

where x5 s () (¢ @) = xo(q, ®)/[1 + (=)Uxo(q, @)/2].
In this notation x,,(g, ) is the density-density response
function while xg g (g, @) describes the spin-spin re-
sponse. The factor of 3 in the last term in the right-hand
side of Eq. (3) comes about because longitudinal and
transverse spin fluctuations are both taken into account.

Within Stoner mean-field theory, ferromagnetism occurs
when xg.(0,0) diverges so that 1+ Ux,(0,0)/2 = 0.
This equation gives, together with the equation n =
2 [d*qN,/(2m)* for the total density determining the
chemical potential, the critical temperature 7', as a function
of kra. For kzT,. much smaller than the Fermi energy e =
W2k /2m = h2(3m*n)*/3 /2m, this gives a critical tempera-
ture
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where v(ep) = mkg/m*h? is the density of states at the
Fermi level. Note that one needs kpa > /2 for the critical
temperature to be nonzero, and that there is a quantum
critical point when kpa = /2 [4].

Our next step is to use the scattering amplitude Ay(g, @)
in Eq. (3) in the well-known expression for the spin drag
relaxation rate 1/7y, following from Boltzmann theory
[11,13]. This yields the result
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which, together with Eq. (3), is the central result of this
Letter and will be evaluated next. Before proceeding we
note that our result is similar to the theory of spin diffusion
in liquid He® [22], although the ferromagnetic phase tran-
sition was not considered in this context.

Results.—In Figs. 1 and 2 we present the results of a
numerical evaluation of Eq. (5), both as a function of
temperature for various interaction strengths kra, and as
a function of interaction strength for various temperatures.
In experiments both dependencies can be explored using a
Feshbach resonance to tune the interaction strength [3].
Both figures clearly show the strong enhancement of the
spin drag relaxation rate as the ferromagnetic state is
approached. The precise form of the enhancement is under-
stood by keeping only the most divergent term in the
scattering amplitude in Eq. (3) so that
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FIG. 2 (color online). Spin drag relaxation rate 1/74 as a
function of kra for various temperatures. The thin vertical lines
indicate the critical values of the interaction parameter kra at
which ferromagnetism occurs.

with a(T) =1+ Uxp(0,0)/2=1— Uv(egp) +
m(T/Tg)?/12 + ... equal to zero at the phase transition
and positive for T larger than the critical temperature. In
obtaining this approximation we have expanded around the
ferromagnetic singularity and used that Imy,(q, w) =
—mv(ep)mw/2hkpqg for small w/q. Using these results
in Eq. (5), and expanding 1/sinh?(x) ~ 1/x%, both the
frequency integral and the momentum integral can be
performed analytically if we use a cutoff of 2k on the
momentum integration that diverges because of the expan-
sion of 1/sinh?(x). Ultimately we find in this manner that
1/Tsd(T) - l/Tsd(Tc) o (T - Tc) ln(T - Tc) for Tl TC <
Tk, which indeed accurately describes our numerical re-
sults near the critical temperature.

We also consider the spin diffusion constant, which from
the Einstein relation is given by D (T) = o,(T)/ xs.5.(0, 0)
and the “spin conductivity” o (T) = n1(T)/m [23]. In
Fig. 3 we show this constant as a function of temperature
for various values of the interaction strength. Near the
critical temperature the spin diffusion constant vanishes
as D,(T) « (T — T,)® with an exponent x = 1, because
74(T.) remains finite and xg_g (0, 0) diverges as 1/(T —
T.) within our generalized random-phase approximation.

At this point it is important to realize that from the point
of view of critical dynamics our findings are mean-field
like. If the spin dynamics can be effectively described by
an isotropic Heisenberg ferromagnet (model J [24]), the
spin conductivity o, (T) is expected to behave as £3-7/2
very close to the transition, where the correlation length
&(T) diverges as 1/(T — T,)” and n and v are the usual
static critical exponents of the ferromagnetic transition
[24]. Since x5 (0,0) diverges as £277, we find that the
spin diffusion constant goes to zero with an exponent k =
(I — n)v/2. In view of this possibility, we have therefore
made sure, using the Ginzburg criterion [25], that the
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FIG. 3 (color online). Panel (a): spin diffusion constant D, as a
function of temperature T for various interaction strengths kga >
7r/2. Panel (b): spin diffusion constant for kpa = 1.2 < 77/2.

upturn of the spin drag relaxation rate already takes place
well outside the critical region where critical fluctuations
can be neglected and our generalized random-phase ap-
proximation is appropriate.

Discussion and conclusions.—As we have mentioned in
the introduction, the spin drag relaxation rate can be de-
termined from the damping of the spin dipole mode [13,14]
in a trapped gas. Since the Fermi energy is usually much
larger than the level splitting in the trap, our results show
that the spin dipole mode is typically strongly overdamped,
which makes the experiment more challenging.
Nevertheless, such a measurement, as well as measure-
ments of the spin diffusion constant as a function of
temperature, gives information on the proximity of the
ferromagnetic phase transition. Although we have consid-
ered a homogeneous system, local-density approximations
are generally valid for trapped Fermi systems, and in
determining the damping of the spin dipole mode of a
trapped two-component gas the homogeneous density
should in first approximation be taken as the central density
of the atomic cloud.

Within our present approach, we consider the transition
to ferromagnetism within mean-field theory, which pre-
dicts it to be continuous. One interesting aspect is that
taking into account correlation effects beyond mean-field
theory [8] results in (i) an increase in the critical tempera-
ture for a given value of kra and (ii) a change in the
character of the transition from second to first order at
very low temperatures. We expect that these modifications
will not qualitatively affect the upturn of 1/7y, as long as
one remains outside the critical-fluctuation region. We note
that the results presented in Fig. 1 for kga > /2 approxi-
mately collapse onto the same function when
h/[(kga)?epTy] is plotted as a function of T/T,.. Our
theory should be interpreted as the simplest but nontrivial
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prediction for this function, and we expect that beyond-
mean-field effects will not significantly alter this scaled
result outside the regime of critical fluctuations. In this
sense we believe that our findings do not only present a
qualitative prediction for the behavior of spin drag near the
ferromagnetic transition, but also contain quantitative in-
formation for future experiments.

In future work we intend to explore the effects of lower
dimensionality, and the implications of critical and quan-
tum critical fluctuations on the exponent « that determines
the behavior of the spin diffusion constant. Furthermore, as
our approach is distinct from the work of Hu [18], who
considered the upturn of the Coulomb drag resistivity as
one approaches the exciton-condensed state in bilayers, we
intend to study this system as well with our present
approach.
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