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An anomalous mean-field solution is known to capture the nontrivial phase diagram of the Ising model

in annealed complex networks. Nevertheless, the critical fluctuations in random complex networks remain

mean field. Here we show that a breakdown of this scenario can be obtained when complex networks are

embedded in geometrical spaces. Through the analysis of the Ising model on annealed spatial networks,

we reveal, in particular, the spectral properties of networks responsible for critical fluctuations and we

generalize the Ginsburg criterion to complex topologies.
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A great deal of attention has been given recently to the
effects that different topological properties may induce on
the behavior of equilibrium and nonequilibrium processes
defined on networks and to the possible implications for
the study of several social, biological, and technological
networks [1,2]. Heterogeneous degree distributions, small
world and spectral properties, in particular, have been
recognized as being responsible for novel types of phase
transitions and universality classes [1–4]. For instance,
scale-free networks present a complex critical behavior
for the Ising model, percolation, and spreading processes
that explicitly depends on the exponent of the power law in
the degree distributions [1–3]. On the other hand, the
existence of nontrivial spectral properties is crucial for
the stability of synchronization processes and OðnÞ mod-
els [4].

Despite the large amount of interest in the subject, much
smaller attention has been devoted to critical phenomena
on complex networks embedded in a metric space [5–9],
though some important problems related to navigability,
efficiency, and search optimization in spatial networks
have already been discussed in the literature [10–13]. In
fact, spatial embedding is a very relevant aspect of infra-
structure and technological networks, including airport
networks, the Internet, and power-grid networks.
Moreover, a pivotal role in shaping the topology of social
networks is played by hidden metric structures in some
underlying abstract space, such as that of the social dis-
tance between individuals [8,9].

The aim of this Letter is to investigate the role of spatial
embedding in relation with the critical behavior of phase
transitions in complex networks. It is well known that in
regular lattices, space dimensionality governs the critical
behavior of equilibrium and nonequilibrium systems. In
particular, below the upper critical dimension, critical fluc-
tuations that are not captured by the mean-field approach
set in. Similarly, for complex networks embedded in a low
dimensional space we can expect that, as the link proba-

bility becomes short ranged, the effect of the underlying
space might change the critical behavior leading to a
breakdown of the validity of (heterogeneous) mean-field
arguments. This should be relevant to understand real
phenomena in spatial networks, such as the spreading of
viruses [6], the emergence of congested phases in the
packet-based traffic on technological networks [14], and
cascading failure phenomena in power-grid networks [15].
As a prototypical example of the complex behavior

induced by spatial embedding, in this Letter we consider
the Ising model on annealed scale-free networks. On a
scale-free network with a degree distribution PðkÞ �
k��SF , the critical temperature of the Ising model diverges
for �SF < 3. The critical exponents, computed by means of
the annealed network approximation [16] or by assuming a
quenched randomness [17,18], deviate from the mean-field
ones as long as �SF < 5, with the exception of �; �0 de-
scribing the divergence of the magnetic susceptibility �

close to the critical temperature Tc (�� jT � Tcj��;�0
). In

fact, �; �0 always remain fixed to their mean-field value
� ¼ �0 ¼ 1. For these reasons we refer to the critical
behavior of random scale-free networks as the heteroge-
neous mean-field solution. We derive here a Ginsburg
criterion [19] for spatial complex networks determining
the condition under which critical fluctuations become
larger than the ones predicted within a mean-field ap-
proach. In particular, we will show that the critical behav-
ior is always mean field, whenever the matrix
p ¼ fpijgi;j¼1;...;N , fixing the probabilities of existence of

each link (i; j) has a finite spectral gap � between the
maximal eigenvalue � and the second maximal one �2.
On the contrary, when the spectral gap � ! 0 in the
thermodynamic limit, the critical behavior depends on
the behavior of the tail of the spectrum of p. We will
demonstrate by theoretical and numerical results that the
behavior of such a tail is well captured by an exponent �S,
related to the effective dimension deff of the network
through the relation �S ¼ ðdeff � 2Þ=2. We find that for
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�S < 1 the critical fluctuations become dominant, and
close enough to the critical temperature the mean-field
theory is not sufficient to correctly characterize the critical
exponents, possibly calling for renormalization group
calculations.

Networks with spatial embedding.—We consider net-
works of N nodes embedded in a d-dimensional
Euclidean metric space, each node i ¼ 1; . . . ; N having
position ~ri. The minimal hypothesis [20] that can be
made on random networks with heterogeneous degrees
and spatial embedding is that links (i; j) are drawn with
probability pij given by

pij ¼
�i�jJð ~ri; ~rjÞ

1þ �i�jJð ~ri; ~rjÞ ’ �i�jJð ~ri; ~rjÞ; (1)

where we assumed that ½maxið�Þ�2½max~r; ~r0Jð~r; ~r0Þ� � 1
and that the matrix Jð ~ri; ~rjÞ only depends on the distance

between the nodes, i.e., Jð~ri; ~rjÞ ¼ Jðj~ri � ~rjjÞ. In this

ensemble the degree ki of a node i is a Poisson random
variable with expected degree �ki fixed by means of the
hidden variables �i and given by the relation �ki ¼ P

jpij.

Therefore, given a set of expected degrees f �kig, we can
evaluate the f�ig variables by solving the equations �ki ¼P

jpij. Networks with homogeneous degrees are generated

by fixing �i ¼ � 8 i, which corresponds to the Manna-
Sen model of spatial networks [7]. Another special choice
is that of space-independent couplings Jij ¼ J 8 i, j ¼
1; . . . ; N, which gives �i ¼ �ki=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Jh �kiNp

, where h �ki ¼P
i
�ki=N. In this case, our formalism easily recovers known

results for both the percolation threshold and the critical
temperature of the Ising model on complex networks with-
out spatial embedding.

Ising model on annealed spatial networks and the
Ginsburg criterion.—We consider a system of binary spin
variables si ¼ �1, for i ¼ 1; . . . ; N, defined on the nodes
of a given annealed network with spatial embedding and
link probability given by the matrix p. The partition func-
tion [1,16] for this problem is given by

Z ¼ X
fsig

e��HðfsigÞ; (2)

with

HðsiÞ ¼ � 1

2

X
i�j

si�iJij�jsj �
X
i

Hisi: (3)

In order to derive a Ginsburg criterion for this statistical
mechanics problem, we generalized the classical approach
by means of stationary phase approximation [19].
Considering only the first-order terms in the expansion
leads to mean-field results. Thus the validity of the mean-
field solution can be checked by evaluating the higher
order corrections at the critical point. Critical fluctuations
that are neglected by the mean-field set in when the second
order corrections diverge, dominating the behavior of the

susceptibility at criticality. In the stationary phase approxi-
mation, the magnetization of the system is given by the
m0

i ’s satisfying the self-consistent equations:

m0
i ¼ tanh

�
�

�
Hi þ

X
j

�iJij�jm
0
j

��
: (4)

At the second order of the stationary phase approximation
[19], performing a Legendre transformation we can evalu-
ate the free energy �ðfmigÞ as

�ðfmigÞ¼�1

2

X
ij

mi�iJij�jmjþ 1

2�

X
i

½ð1�miÞ lnð1�miÞ

þð1þmiÞ lnð1þmiÞ�
þ 1

2z�
lndet½�ij��Jij�i�jð1�m2

j Þ�; (5)

where the external field Hi ¼ @�ðfmigÞ=@mi and we have
introduced the parameter z in order to keep track of the
different orders in the expansion. The susceptibility matrix

is defined as ��1
i;j ¼ @2�

@mi@mj
. We compute it in the paramag-

netic phase, where mi ¼ 0, and then we perform the pro-
jection along the eigenvector u�i associated with the
eigenvalue � of the connectivity matrix, obtaining

��1
� ¼ ��þ 1

�
þ 1

z

X
i;‘

pi‘½1� �p��1
‘iðu�i Þ2; (6)

where 1 is the identity matrix. The instability of the para-
magnetic phase is now determined in terms of the largest
eigenvalue � of the matrix pij through the condition

��1
� ðTcÞ ¼ 0. We express the susceptibility in terms of

the spectral density �ð�Þ of the matrix p as

��1
� ðTÞ ¼ ��þ T þ 1

z

Z
d��ð�Þfð�Þ �

1� �
T

; (7)

where fð�Þ ¼ N
P

iðu�i u�i Þ2. To leading order in 1=z the
critical temperature Tc is given by

Tc ¼ �� 1

z

Z
d��ð�Þfð�Þ �

1� �
�

: (8)

Using (8), we can express the susceptibility, Eq. (7), for
T ! Tc as

��1

T � Tc

¼
�
1� 1

z

Z
d�

�ð�Þfð�Þð�Þ2
ðT � �ÞðTc � �Þ

�
: (9)

We assume now that the spectrum �ð�Þ has a spectral
edge �c equal to the average value of the second largest
eigenvalue �2 of p, i.e., �c ¼ h�2i such that the spectrum
for � < �c is self-averaging. For � < �c, close to the upper
edge, we assume the scaling behavior

�ð�Þ ’ ð�c � �Þ�S ; (10)

which we can use to perform the integral in (9). Moreover,
we define the spectral gap �N of a network of size N as the
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difference between the maximal eigenvalue � and the
spectral edge, i.e., �N ¼ �� �c. Performing a straight-
forward calculation under the assumption that the gap �N

is self-averaging in the thermodynamic limit, i.e.,
limN!1�N ! �, we distinguish two possible behaviors.
If�> 0, close to the critical temperature T ! Tc, we have

��1 ¼ ðT � TcÞ½1� ð��S�1C2 � C1Þ=z�; (11)

where C1;2 are constants. In this case the critical fluctua-

tions are always mean field. On the other hand, if � ¼ 0,
we have

��1 ¼ ðT � TcÞ½1� ðT � TcÞ�S�1C3=zþ C1=z�; (12)

with constants C1;3. In this case the critical behavior de-

pends on the particular value of �S. For �S � 1 the cor-
rections of order 1=z to ��1 do not modify the critical
behavior of the susceptibility. On the contrary, for �S < 1,
the corrections of order 1=z diverge close to the phase
transition, the fluctuations dominate the critical behavior,
and the mean-field approach cannot be applied. As a first
check we look at the case of homogeneous degree distri-
butions. We consider a d-dimensional lattice of linear size
L, homogeneous hidden variables �i ¼ � 8 i, and cou-
pling matrices

Jð ~ri; ~rjÞ ¼ expðj~ri � ~rjj=d0Þ; (13)

depending on the typical distance d0. In this case we
always get limN!1�N ¼ 0 and �S ¼ ðd� 2Þ=2, recover-
ing the classical result of the Ginsburg criterion which
states that the critical dimension for the Ising model is
d ¼ 4.

Application to complex spatial networks.—We now turn
to the case of linking matrices p describing annealed scale-
free networks embedded in a d-dimensional space with
finite critical temperature Tc. For the sake of concreteness,
we consider a regular d ¼ 2 lattice of side L, we assign to
each of the N ¼ L2 nodes an expected degree �k according
to a power-law distribution pð �kÞ � �k��SF , and we consider
exponentially decaying couplings as in Eq. (13). The val-
ues of the parameters f�ig are given by the solution of the
set of equations �ki ¼ P

jpij with pij ¼ �i�jJij.

The role played by spatial embedding in the critical
behavior of these networks is well characterized by the
spectrum �ð�Þ of the corresponding matrix p. For small d0,
where we expect nontrivial effects of space, the behavior of
the spectrum close to �c follows Eq. (10). In Fig. 1 we
report the cumulative distribution (rank plot) of the eigen-
values of p for d0 ¼ 1 and different values of �SF. We
observe that the spectral density below the spectral edge is
self-averaging and the exponent �S is a decreasing function
of �SF (at constant d0) assuming values above and below
�?
S ¼ 1. However, the maximal eigenvalue � and the

spectral gap � are not, in general, self-averaging, being
subject to strong fluctuations also for large network sizes.
This occurs also for the parameter values studied in Fig. 1.

The absence of self-averaging is also observed for net-
works without spatial embedding, where it is essentially
driven by the cutoff fluctuations [21]. While this anoma-
lous effect might also be present in spatial networks, it
seems that the sample-to-sample fluctuations observed in
the spectral gap are mainly due to a new feature of spatial
networks, i.e., their local geometry. In fact the non-self-
averaging properties also appear for values of the exponent
�SF (for example, �SF ¼ 6), where the fourth moment of
the degree converges and the critical behavior associated
with a complex network without spatial embedding is self-
averaging [21]. We checked numerically in a number of
cases that the spectral gap is non-self-averaging, but the

probability Pð��S�1
N Þ is stable when the value of ��S�1

N is
rescaled with its average value h��S�1i (see Fig. 2).
Therefore, in this case we characterize the average critical
behavior of the ensemble by the quantity

� ¼ lim
N!1

�
��1

T � Teff
c

�
¼ lim

N!1

�
1� h��S�1

N iC2 � C1
z

�
;

(14)

where Teff
c is the effective critical temperature of a network

and depends explicitly on the size N. If � diverges, i.e.,

limN!1h��S�1
N i ! 1, we expect that the critical fluctua-

tions neglected by the mean-field approach become rele-

vant. In the inset of Fig. 1 we report h��S�1
N i averaged over

100 realizations of the p matrices for the two network
ensembles with d0 ¼ 1, �SF ¼ 4; 6 as a function of the
network size N. The results for d0 ¼ 1, �SF ¼ 4 are com-

patible with a limit h��S�1
N i ! const for N ! 1.
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FIG. 1 (color online). Cumulative rank plot of the averaged
spectra of 100 matrices p for scale-free random networks em-
bedded in dimension d ¼ 2, linear size L ¼ 80, coupling scale
d0 ¼ 1, minimal expected degree m ¼ 2, and �SF ¼ 4; 6. The
behavior for large eigenvalues is well fitted by the expression
(10) with different exponent �S below and above the critical

value �?
S ¼ 1. Inset: Average value h��S�1

N i for network ensem-

bles with the same parameters as before but with varying system

size N ¼ L2. The fit shows that for �SF ¼ 6 the quantity h��S�1
N i

increases with the system size, while for �SF ¼ 4 it remains
constant.
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Therefore, in this case, the critical behavior should be well
captured by the mean-field behavior. For networks with

d0 ¼ 1 and �SF ¼ 6, instead, h��S�1
N i seems to diverge as

N ! 1, signaling the presence of critical fluctuations not
captured by the mean-field approach.

Conclusions.—In this Letter we have investigated how
spatial embedding can affect the critical behavior around a
phase transition in systems defined on spatial complex
networks. In particular, by means of a detailed study of
the Ising model on annealed spatial complex networks, we
have shown that relevant critical fluctuation not captured
by any (heterogeneous) mean-field theory may set in. Our
analysis points out that knowledge of the spectral proper-
ties of the link probability matrix p is crucial for the
understanding of the critical behavior of dynamical pro-
cesses and suggests a classification of the latter based on a
generalized Ginsburg criterion. More precisely, when the
spectrum presents a finite gap�> 0 in the thermodynamic
limit, the fluctuations are always mean field. If instead the
gap vanishes in the thermodynamic limit, the critical be-
havior depends on the exponent �S describing the scaling
of the spectral density close to its upper edge. A fascinating
open problem is the relation between the critical behavior
of annealed and quenched spatial networks. The solution of
this problem might show other new unexpected effects due
to fluctuations of the local geometry. Finally, our results
open new perspectives for the comprehension of critical
phenomena in spatial complex networks, whereas the gen-
eral formalism presented here could be applied to the study
of realistic models of epidemic spreading in transportation
networks as well as to the study of the control of fluctua-

tions in technological and power-grid networks.
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FIG. 2 (color online). The distribution Pð��S�1Þ is not self-
averaging but is a stable distribution when the variable ��S�1 is
normalized with its average value. Fixing the value of d0 ¼ 1,
we show in (a) the distribution for �SF ¼ 4, while in (b) �SF ¼
6. Both figures are obtained from a diagonalization of M
matrices of size N ¼ L2 with L ¼ 50; 60; 70; 80. In particular,
the number of samplesM is, respectively,M ¼ 1000 for L ¼ 50,
M ¼ 400 for L ¼ 60, M ¼ 100 for L ¼ 70, and M ¼ 100 for
L ¼ 80.
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