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A general method is presented to unfold band structures of first-principles supercell calculations with

proper spectral weight, allowing easier visualization of the electronic structure and the degree of broken

translational symmetry. The resulting unfolded band structures contain additional rich information from

the Kohn-Sham orbitals, and absorb the structure factor that makes them ideal for a direct comparison

with angle resolved photoemission spectroscopy experiments. With negligible computational expense via

the use of Wannier functions, this simple method has great practical value in the studies of a wide range of

materials containing impurities, vacancies, lattice distortions, or spontaneous long-range orders.
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The electronic band structure is no doubt one of the most
widely applied analysis tools in the first-principles elec-
tronic structure calculations of crystals, especially within
the Kohn-Sham framework [1] of density functional theory
[2]. It contains the basic ingredients to almost all the text-
book descriptions of crystal properties (e.g., transport,
optical and magnetic properties, and the semiclassical
treatment [3]). Furthermore, the theoretical band structure,
when formulated within the quasiparticle picture of the
one-particle Green function, has a direct experimental
connection with angle resolved photoemission spectros-
copy (ARPES).

However, the usefulness of the band structure, as well as
the agreement with ARPES spectra, diminishes rapidly
when a large ‘‘supercell’’ is involved. The use of supercells
is a common practice in modern first-principles studies
when the original periodicity of the system is modified
via the introduction of ‘‘external’’ influences from impu-
rities or lattice distortions. They are also widely applied in
the presence of spontaneous translational symmetry break-
ing, say, by a charge density wave, a spin density wave, or
an orbital ordering. As illustrated in Fig. 1, when the period
of the supercell grows longer, the corresponding first
Brillouin zone of the supercell (SBZ) shrinks its size. In
turn, bands in the first Brillouin zone of the normal cell
(NBZ) get ‘‘folded’’ into the SBZ. For a very large super-
cell, the resulting SBZ can be tiny in size but contain a
large number of ‘‘horizontal’’ looking bands that no longer
resemble the original band structure or the experimental
ARPES spectra, and cease to be informative besides giving
a rough visualization of the density of states (DOS). The
information is now hidden in the Kohn-Sham orbitals,
instead of the dispersion of the bands.

In this Letter, by explicitly utilizing these Kohn-Sham
orbitals, we present a method to unfold the band structure
of the SBZ back to the larger NBZ with proper spectral
weight. Making use of the corresponding Wannier func-
tions, the method can be greatly simplified to negligible

computational cost. The resulting unfolded band structure
incorporates explicitly the structure factor and thus facili-
tates significantly a direct comparison with ARPES experi-
ments. Furthermore, the unfolded band structure illustrates
very clearly the influence of the symmetry breaker (e.g.,
impurities, vacancies, dopants, lattice distortions) via di-
rect comparison with the nominal normal-cell band struc-
ture. In the case of spontaneous symmetry breaking, it
gives a direct visualization of the strength of each band’s
coupling to the order parameters. In light of the amazingly
rich information, we expect countless applications of this
simple method to a wide range of studies employing super-
cells, including systems with charge density wave, spin
density wave, or orbital ordering, and in the studies of
impurities and lattice distortions, to name a few.
Theoretically, the folding of the bands results from the

introduction of additional coupling, Vkj;k0j0 , between the

originally uncoupled Kohn-Sham orbitals jkji and jk0j0i in

FIG. 1 (color online). Illustration of band folding in the super-
cell calculations: (a) band structure of a two-dimensional one-
band first-neighbor tight-binding model, (b) the same obtained
from a 4� 4 supercell calculation, and (c) the same obtained
from a 16� 16 supercell calculation. Panel (d) shows the DOS.
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the NBZ. (Here k and j denote the crystal momentum and
the band index.) This coupling extends the period of Kohn-
Sham orbitals to a longer one compatible with the size of
the supercell. Equivalently, this coupling, no matter how
small it is, mixes the original orbitals of different normal-
cell crystal momentum k and forces us to label them with a
supercell crystal momentum K as the new quantum num-
ber in the SBZ. [In the following, upper (lower) case
symbols refer to variables corresponding to the super (nor-
mal) cell.] Our method is based on the simple idea that
unless V is extremely strong, it is much more convenient
and informative to represent the band structure or more
precisely the spectral function A ¼ �ImG=� of the re-
tarded one-particle Green function, G, not in the new
eigenorbital jKJi basis, but in the jkji basis of the normal
cell instead:

G�1
kj;k0j0 ð!Þ ¼ G�1

0kj;kjð!Þ�k;k0�j;j0 � Vkj;k0j0 ; (1)

whereG0 represents a conceptual system with the period of
the normal cell before V is applied. Clearly, G smoothly
recovers the original period of G0 as V approaches zero.
Thus,

Akj;kjð!Þ ¼ X

KJ

jhkjjKJij2AKJ;KJð!Þ (2)

should resemble the band structure of the normal cell with
deviations in both the dispersion and in the spectral weight
that reflect the effects of V. Note that while the coupling V
introduces nondiagonal elements of Akj;k0j0 ð!Þ, we focus

only on the diagonal elements here for simplicity, without
loss of generality. It is straightforward to show that in the
case of V ¼ 0, the weight of the bands that follow the
bands of the normal cell is exactly one, and that of the rest
of the folded bands vanishes. One thus recovers exactly the
original band structure of the normal cell as expected. That
is, the unfolded band structure is invariant against any
arbitrary choice of supercell.

In addition, it is often desirable to also measure in each
band the contribution of local orbitals with well-defined
characters (e.g., px, dxz, eg, bonding, or antibonding). This

can be achieved rigorously via the use of local Wannier
orbitals jrni:

Akn;knð!Þ ¼ X

KJ

jhknjKJij2AKJ;KJð!Þ; (3)

where jkni ¼ P
rjrnihrnjkni ¼

P
rjrnieik�r=

ffiffi
l

p
are the

Fourier transform of the Wannier orbitals jrni of orbital
index n and associated with the lattice vector r. (Here l
denotes the number of k points in the NBZ.) Given a
consistent definition of the Wannier functions of the super-
cell calculation that maps jRNi of the supercell to
jRþ r; n0i of the normal cell, where r ¼ rðNÞ is a
normal-cell lattice vector within the first supercell, and
n0 ¼ n0ðNÞ is the corresponding normal-cell orbital index,
the use of Wannier functions also reduces dramatically the

computational expense by turning the factor

hknjKJi ¼ X

RN

hknjRNihRNjKNihKNjKJi

¼ X

RN

hknjRþ rðNÞ; n0ðNÞihRNjKNihKNjKJi

¼ ffiffiffiffiffiffiffiffiffiffi
1=Ll

p X

RN

eiðK�kÞ�Re�ik�rðNÞ�n;n0ðNÞhKNjKJi

¼
ffiffiffiffiffiffiffiffi
L=l

p X

N

e�ik�rðNÞ�n;n0ðNÞ�½k�;KhKNjKJi (4)

into merely a structure factor that is a sum of coefficients of
the eigenorbital jKJi of the supercell in the Wannier
function basis, modulated by the proper phase that encap-
sulates the internal position in the supercell. Here [k]
denotes the k point folded into the SBZ from k. Since
AKJ;KJ is just a delta function at the eigenvalue, �ð!�
�KJÞ, this final expression in essence requires only a simple
coding to plot all the eigenvalues of the supercell in the
larger NBZ with proper weights.
Of course, the above definition only makes sense when

the Wannier functions jRNi $ jrni and jRN0i $ jr0ni
(that are translational symmetric in the normal-cell unit:
same n different r) are approximately identical. Therefore,
the ‘‘gauge’’ [4] of constructing jRNi and jRN0i with the
same nmust be controlled accordingly. In the presence of a
potential that breaks the translational symmetry of the
normal cell, for example, coming from a change density
wave, lattice distortions, impurities, etc., the commonly
employed [5–7] maximally localized Wannier function [4]
and other minimization-based methods [8,9] risk defining
the gauge differently in the supercell in favor of better
localization, and thus should be used with extreme caution.
We found that a maximum projection method [10–12] with
consistent projection between the normal cell and the
supercell works well to satisfy this requirement. Equations
(3) and (4) should in principle also be applicable in many
existing codes employing atomic center local orbitals as
basis [13–17], as long as the nonorthogonal nature of those
bases is taken into account. Of course, these methods do
not benefit from the energy resolution of the Wannier
functions that allows unfolding only the bands within the
physically relevant energy range.
The unfolded band structure also has an important direct

connection to the ARPES measurement. For systems with
enlarged unit cells due to weak symmetry breaking, the
ARPES spectra typically show different band structures in
different Brillouin zones of the supercell, distinctly differ-
ent from the results of first-principles calculations, which
have all the bands in the SBZ. In some cases, the observed
ARPES spectra might even appear ignorant about the SBZ
[18]. This significant mismatch is typically regarded as the
effect of the ‘‘matrix element’’ and left unaddressed by
both theorists and experimentalists, making a direct com-
parison very difficult. Within the ‘‘sudden approximation,’’
the ARPES intensity is proportional to [19,20]
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X

KJ

je � hfjpjKJij2AKJ;KJð!Þ � X

KJkn

je � hfjpjknij2jhknjKJij2AKJ;KJð!Þ ¼ X

kn

je � hfjpjknij2Akn;knð!Þ; (5)

where e denotes the polarization vector of light, and jfi the
‘‘final state’’ of the photoelectron. Clearly, except for the
polarization dependent dipole matrix element, je �
hfjpjknij2, the unfolded spectral function, Akn;knð!Þ, con-
tains almost the full information of the experimental spec-
trum by absorbing the additional structure factor hknjKJi,
absent in the typical supercell solution, AKJ;KJð!Þ.
Obviously, the inclusion of this additional matrix element
would facilitate significantly the comparison between the
theory and the ARPES experiment.

As an example, let us consider the effect of Na impuri-
ties in Na-doped cobaltates, NaxCoO2 at x ¼ 1=3. In typi-
cal first-principles studies [21,22], the impurity is
incorporated via a supercell as demonstrated in Fig. 2(b)
in comparison with the undoped normal cell shown in
Fig. 2(a). Figures 2(c) and 2(d) show the corresponding
band structures obtained with standard density-functional
theory calculations. Since in this example the supercell is 3
times larger than the normal cell, the corresponding SBZ is
3 times smaller and contains 3 times more bands. Clearly,
even for such a small supercell, the change of the size and

orientation of the SBZ, and more importantly the large
number of folded bands, make it practically impossible to
cleanly compare with the band structure in the NBZ of the
undoped parent compound. In fact, to many untrained eyes,
these two band structures may appear entirely unrelated.
By contrast, the unfolded band structure shown in

Fig. 2(e) demonstrates a strong resemblance to the band
structure of the undoped compound. This allows a clear
visualization of the effects of the (periodic) Na impurities
on the original Co and O bands. Specifically, besides the
introduction of additional Na-s bands, one observes shifts
in band energies, gap openings, and the nearby ‘‘shadow
bands,’’ all of which reflects the influence of the Na impu-
rity on these bands. What is really nice here is the clean-
ness of the unfolded band structure in general, owing to the
weak intensity of the shadow bands. As expected, the
influence of the Na impurity is only minor on most Co-d
and O-p bands, while the Na-s bands themselves show
sizable effects of broken translational symmetry. The size
of the gap opening and the intensity of the shadow bands
actually reflect directly the strength of each band’s cou-
pling to the broken translational symmetry of the normal
cell (in this specific case, to the charge-density-wave
(CDW) order parameter introduced by the periodic pres-
ence of Na atoms.) Of course, for a simulation of randomly
positioned impurities, these CDW-related features are en-
tirely artificial, and the unfolded band structure makes
apparent the alarming limitation of the common practice
of using small supercells in the study of impurities. On the
other hand, in many other cases, for example the super
modulation of the lattice, these features would actually
correspond to a physical order parameter and provide
valuable information.
As another example, let us consider a spontaneous orbi-

tal ordering in A-type antiferromagnetic LaMnO3.
Figures 3(c) and 3(d) show the similar comparison of
band structures without and with the long-range staggered
orbital order, corresponding to unit cells shown in Fig. 3(a)
(normal cell) and Fig. 3(b) (supercell), respectively. Both
results are obtained via the LSDAþU (U ¼ 8 eV, JH ¼
0:88 eV) approximation without lattice relaxation for sim-
plicity, without loss of generality. By comparing the band
structures with and without the orbital order on the equal
footing, the detailed information of the spontaneous orbital
order should be visualized explicitly.
Just like in the NaxCoO2 case, the straightforward re-

sults of the orbital ordered (OO) band structure [Fig. 3(d)]
of the supercell calculation [23] can hardly be compared
with the non-OO one [Fig. 3(c)]. By contrast, the unfolded
band structure [Fig. 3(e)] of the OO case resembles
strongly the non-OO case. In fact, one finds that only those
bands of Mn-eg character (red, blue, and green) show

FIG. 2 (color online). Lattice structures of (a) Co2O4 (normal
cell) and (b) Na2Co6O12 (supercell), the corresponding band
structure of (c) the normal cell and (d) supercell calculation,
and (e) the unfolded band structure of the supercell. The inset
illustrates the effects of weak translational symmetry breaking
via spectral functions over the region [�4:6 eV, �4:2 eV] and
[ 15M�, 3

5M�].
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strong coupling to the OO order parameter with large gap
openings and intensive shadow bands, while the rest of the
bands are basically uncoupled to the orbital order. In
addition, from the significant energy gain corresponding
to the large OO gap (�OO) near the Fermi level of the red
and blue bands, it is apparent that essentially the orbital
order is driven only by the spin-majority eg orbitals (red

and blue). All these effects are of course entirely consistent
with the existing ‘‘electronic interaction assisted Jahn-
Teller picture’’ [24–26], in which the degenerate Mn-eg
orbitals split to gain energy and stabilize the system at low
temperature. However, this unfolded band structure repre-
sents probably the best visualization of such physics in real
materials with details of first-principles calculations.

In conclusion, a simple method for unfolding first-
principles band structures of supercell calculations is pre-
sented. Proper spectral weights are obtained with negli-
gible computational cost by making use of the Kohn-Sham
orbitals with the help of carefully chosen Wannier func-
tions. The inclusion of the structure factor in the resulting
unfolded band structure makes it ideal for direct compari-
son with the ARPES measurement. The resulting unfolded
band structures allow an easy visualization of each band’s
coupling to the order parameter of spontaneous broken

translational symmetry, as well as their couplings to the
external symmetry breakers such as the impurities and
lattice distortions. Our method should prove valuable in
the study of a wide range of problems requiring the use of
supercells, including systems with impurities, vacancies,
and lattice distortions, and broken symmetry phases of
strongly correlated materials, to name a few.
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FIG. 3 (color online). Lattice structures of (a) normal cell and
(b) doubled-size supercell of A-type antiferromagnetic ordered
LaMnO3, without and with the orbital ordering, respectively, the
corresponding band structure of the normal cell (c) and the
supercell (d), and the unfolded band structure of the supercell
(e) indicating the orbital-ordering gap, �OO. Red and blue bands
denote the z2 and x2 � y2 orbital characters of the spin-majority
channel, and green bands give both eg characters of the spin-

minority channel.
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