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We propose a method to predict the value of the external strain where a generic amorphous solid will

fail by a plastic response (i.e., an irreversible deformation), solely on the basis of measurements of the

nonlinear elastic moduli. While usually considered fundamentally different, with the elastic properties

describing reversible phenomena and plastic failure epitomizing irreversible behavior, we show that the

knowledge of some nonlinear elastic moduli is enough to predict where plasticity sets in.
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Introduction.—Studies of plasticity in amorphous solids
have always been hampered by the lack of any method to
identify a priori the locations of dissipative (plastic)
events. This is in sharp contrast to crystals, where plasticity
can be assigned to the motion of identifiable, topological
defects like dislocations, the discovery of which has trig-
gered tremendous theoretical breakthroughs. In the ab-
sence of any clear-cut definition of ‘‘shear transformation
zones,’’ studies of amorphous systems are thus still in
search of reliable predictors of yielding. Obvious observ-
ables such as local stress or density have proven unreliable
[1,2]. More promising are studies of local elastic fluctua-
tions [3–6]. It appeared that plastic failure correlates with
soft elastic regions. This could be expected as yielding
involves the crossing of saddle points at which the shear
modulus vanishes before it presents a singular behavior [7].
Nevertheless the values of the linear elastic moduli alone
do not carry predictive power; we cannot just say that
failure will occur in any given softer region in space. The
search for reliable predictors of plasticity has thus become
a major issue in studies of amorphous solids. In this Letter
we will show that an accurate predictor of plastic failure in
an athermal amorphous solid can be constructed, as soon as
higher order derivatives of the potential function are in-
volved. Our findings not only offer a predictive tool for the
onset of failure, but also point out the importance of
nonlinearities, and, in particular, those that couple non-
linearly ‘‘softening’’ regions with strain at larger scales.

To fix ideas, imagine a simple shear deformation applied
to a given piece of amorphous solid (for simplicity in two
dimensions, with immediate extensions to three dimen-
sions). A small strain increment �� corresponds to a
change of the ith particle positions ri ! r0i as x0i ¼ xi þ
��yi, y

0
i ¼ yi, In athermal quasistatic conditions (T ! 0,

_� ! 0), the system lives in local minima, and follows
strain-induced changes of the potential energy surface
[8,9]. Therefore, the particles do not follow homogene-
ously the macroscopic strain, and their positions change as
ri ! r0i þ ui, where ui denotes nonaffine displacements.
Around some stable reference state at � ¼ �0, the field ui,

the system energy, and internal stress �xy are smooth

functions of �. We can thus write

�xyð�Þ ¼
X1
n¼0

Bn

n!
ð�� �0Þn; Bn ¼ lim

T!0

dn�xy

d�n

���������¼�0

:

(1)

As the strain increases, the system must eventually lose
mechanical stability; the ‘‘elastic branch’’ on the stress
curve ends in a discontinuity as the system fails via a first
subsequent ‘‘plastic event’’ (see Fig. 1). It is precisely at
this instability, say, at � ¼ �P, that the function �xyð�Þ
loses its analyticity. Accordingly we recognize that the
radius of convergence of the series (1) is precisely j�P �
�0j, where �P can be larger or smaller than �0.
Our method to predict where plasticity sets in rests on

two ideas. The first is that the coefficients in Eq. (1) contain
relevant information about the value of � where analyticity
is lost. This comment is reminiscent of high temperature
expansions in critical phenomena, where the knowledge of
a substantial number of derivatives (and customarily using
some Padé resummation) can shed important light on the
nature of the critical point [10]. The second is that,
although we do not have access to a large number of
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FIG. 1. A typical stress vs strain curve in a system of 4096
particles in two dimensions obtained in the athermal limit. Every
elastic (reversible) increase in stress is followed by a sudden
plastic (irreversible) drop in stress. The aim of this Letter is to
predict the value of the strain at which the next plastic drop will
take place.

PRL 104, 215502 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
28 MAY 2010

0031-9007=10=104(21)=215502(4) 215502-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.215502


derivatives (see below), we actually know [7] the nature of
the singularity at �P, and we can use this knowledge to
reach predictability which otherwise would be out of hand.
Recall that as long as the system remains in mechanical
equilibrium (i.e., along the elastic branch) the forces f i on
every particle are zero before and after an infinitesimal
deformation; in other words [7,11] with U the potential
energy

df i

d�
¼ � d

d�

@U

@ri
¼ � d

d�

@U

@ui
¼ 0; (2)

which implies

@2U

@�@ui
þ @2U

@uj@ui

duj
d�

� �i þHij

duj
d�

¼ 0: (3)

This condition introduces the all-important Hessian matrix
Hij and the ‘‘nonaffine force’’ �i which can both be

computed from the interparticle interactions. We rewrite
this condition as

dui
d�

¼ �H�1
ij �j ¼ �X

k

c ðkÞ
j ��j

�k

c ðkÞ
i

� � c ðPÞ
j ��j

�P

c ðPÞ
i ; (4)

where the second equation results from expanding in the

eigenfunctions of H, Hijc
ðkÞ
j ¼ �kc

ðkÞ
i ; the last estimate

stems from our knowledge that in finite systems the plastic
event is associated with a single eigenvalue going through
zero when the systems slide over a saddle. Denote the
critical eigenvalue as �P. Equation (4) integrates to provide
the distance of the nonaffine field ui from its value at �P,

uið�Þ � uið�PÞ ¼ Xð�Þc ðPÞ
i , where Xð�Þ is a function of �

only, satisfying Xð�PÞ ¼ 0 and

dXð�Þ
d�

� � c ðPÞ
j ��j

�P

: (5)

Finally, we use the crucial assumption [7] that the eigen-
value �P crosses zero with a finite slope in the
X-coordinate system itself, where distances are measured
along the unstable direction:

�P � AX þOðX2Þ: (6)

Together with Eq. (5) and asserting that �j is not singular

(it is a combination of derivatives of the potential function
[11]) implies that

Xð�Þ / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P � �

p
: (7)

These results are now used to determine the singularity
of the stress at �P. We start with the exact result for the
shear modulus [7,11]

� ¼ �B �� �H�1 ��=V; (8)

where �B is the Born term. Using Eqs. (6) and (7) we

conclude that near �P we can write the shear modulus as a
sum of a regular and a singular term,

� � ~�� a=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P � �

p þOð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P � �

p Þ: (9)

We thus assert that in the vicinity of �P

�xy ��P þa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P ��

p þbð�P ��Þ3=2 þ�� � ; �<�P:

(10)

Indeed, the stress begins to go down before the plastic
event takes place, but this is not seen in Fig. 1 since this
happens very sharply. We can now come back to the
question of predicting plasticity by looking at derivatives
at any given point �0 < �P. Near �0, we know that �xy �
�ð�� �0Þ þ . . . . Using (10) we write the ansatz

�xyð�Þ ¼ �0 þ�ð�� �0Þ þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P � �

p þ bð�P � �Þ3=2;
(11)

from which we can recalculate the derivatives at � ¼ �0:

B2 ¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P � �0

p
�
3b� a

�P � �0

�
;

B3 ¼ 3

8ð�P � �0Þ3=2
�
b� a

�P � �0

�
;

B4 ¼ 3

16ð�P � �0Þ5=2
�
3b� 5a

�P � �0

�
:

(12)

Note that the shear modulus has disappeared from these
expressions, becoming irrelevant for the subsequent pre-
diction of the instability threshold. By measuring these
three derivatives at �0 we can determine all the unknowns
in Eq. (12). �P solves a 4th order polynomial, and

�P ¼ �0 þ
3B3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9B2

3 � 2B2B4

q
2B4

; (13)

is the only physical solution among the four available ones.
Next we test these results in a specific model.
Model and numerical procedures.—Below we employ a

model system with point particles of two ‘‘sizes’’ but of
equal massm in two dimensions, interacting via a pairwise
potential of the form

�

�
rij
�ij

�
¼

�"½ð�ij

rij
Þk þPq

l¼0 c2lðrij�ij
Þ2l�; rij

�ij
� xc

0;
rij
�ij

> xc;
(14)

where rij is the distance between particle i and j, " is the

energy scale, and xc is the dimensionless length for which
the potential will vanish continuously up to q derivatives.
The interaction length scale �ij between any two particles i

and j is �ij ¼ 1:0�, �ij ¼ 1:18�, and �ij ¼ 1:4� for two

‘‘small’’ particles, one ‘‘large’’ and one ‘‘small’’ particle,
and two ‘‘large’’ particles, respectively. The coefficients
c2l are given by
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c2l ¼ ð�1Þlþ1

ð2q� 2lÞ!!ð2lÞ!!
ðkþ 2qÞ!!

ðk� 2Þ!!ðkþ 2lÞ x
�ðkþ2lÞ
c : (15)

We chose the parameters xc ¼ 7=4, k ¼ 10, and q ¼ 6.
The unit of length is � and the unit of energy is ". The
density for all systems is set to be N=V ¼ 0:85��2. We
employ an athermal quasistatic scheme which consists of
imposing an affine transformation to each particle of a
configuration, followed by a potential energy minimization
under Lees-Edwards boundary conditions [12]. In this
scheme one can obtain purely elastic trajectories of stress
vs strain [13], which allows for the calculation of the total
derivatives of stress with respect to strain using finite
differences; we choose the stopping criterion for the min-
imizations to be jriUj< 10�25 "

� for every coordinate xi,

and select the strain increment for taking derivatives to be
�� ¼ 5� 10�7.

It is useful to compare our prediction with a simple
failure criterion which uses a naive Taylor series of the
form �xyð�Þ ¼ �0 þ�ð�� �0Þ þ 1

2B2ð�� �0Þ2 þ
1
6B3ð�� �0Þ3 þ 1

24B4ð�� �0Þ4. From here �P is esti-

mated as the point at which j d�d� j�¼�P
¼ 0—the difference

between this point and the actual yield point is negligible
compared to all other strain scales entering the problem
[14]. This is the solution of the equation:

�þB2ð�P��0Þþ1

2
B3ð�P��0Þ2þ1

6
B4ð�P��0Þ3¼0:

(16)

Predictions.—Figure 2 in the upper panel demonstrates
the quality of our predictor for a typical initial condition
taken in the elastoplastic steady state in a system with N ¼
484. Here, �0 corresponds to the strain at which the elastic
branch was reached via a prior plastic event. The total
length of the branch on the stress-strain curve is thus
exactly �P � �0. We show the stress vs strain curve and
the values of �P predicted using either Eq. (13) or (16) at
each value of the external strain. We see that the naive
Taylor expansion fails except right at �P, whereas our
accelerated method works very well over nearly the whole
length of the elastic branch. Of course, in the elastoplastic
steady state the strain range between plastic events is rather
limited—as reflected by the scale of abscissa. But our data
show that the transition between one plastic event and the
next is entirely controlled by a single mode, i.e., by a single
soft zone. We will shortly come back to this issue.

We also test our predictor starting from an equilibrium
isotropic state obtained by thermal annealing. Here we
need to predict the first plastic event which occurs upon
increasing the external strain. This situation could be ex-
pected to be more tricky since at � ¼ �0 ¼ 0 all the even
derivatives d2n�xy=d�

2n vanish on the average. We could

expect that, upon straining, these derivatives must build up
before predictability of plasticity is achieved. In fact, as
illustrated on the lower panel of Fig. 2 predictability is
often achieved rapidly, even though the strain range is

considerably larger than in the upper panel. In steady state
the vast majority of the elastic branches end up in a plastic
event whose onset can be predicted as demonstrated here.
In contradistinction, the elastic branch emanating from the
isotropic equilibrium state may exhibit large nonaffine
elastic events which resemble a typical precursor to a
plastic failure but avoid it by eventually stabilizing. Our
derivatives will pick up these elastic events and will in-
correctly predict a plastic failure before landing on the
right prediction. This scenario is shown in Fig. 3 in which
two nonaffine large events occur before the first plastic
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FIG. 2 (color online). Upper panel: Straining from an elastic
branch of the elastoplastic steady state in a system of N ¼ 484
particles. Shown are the stress vs strain curve up to the first
plastic event (blue rhombi) and the value of �P as predicted by
Eq. (13) for every value of � (green squares). In addition we
show the prediction of the simplistic Taylor expansion (16) (red
circles). Lower panel: The same measurements starting from the
equilibrium isotropic stressless state. Note the region where the
even derivatives build up.
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FIG. 3 (color online). The first three nonlinear derivatives Bn

as a function of �, displaying the huge variation in value due to
large nonaffine reversible transformation before diving to �1
because of a plastic event.
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event. All three derivatives undergo huge changes at the
nonaffine events and then dive to �1 at the true plastic
event. This seems to be a trace of the typical presence of
several interacting eigenmodes, not necessarily well
aligned with the direction of shearing. We stress that this
phenomenon is quite rare and the normal situation is the
one that is exhibited in the Fig. 2 lower panel.

Dependence on system size.—The data shown in Figs. 2
and 3 pertain to a relatively small system of 484 particles.
We therefore must raise the important question of how the
predictability of the plastic failure depends on the system
size. To study the size dependence of the predictability we
measured the distance��P � j�� �Pj for which the error
in estimating �P, denoted as ��P, satisfies ��P=��P �
0:15, for systems of varying sizes (see inset in Fig. 4). The
results are shown in Fig. 4, indicating that the range of
predictability reduces like a power law with the system
size,

��P � N�; � � �0:61: (17)

To estimate the exponent � theoretically, we note that for
predictability to be possible we need the divergent term of
at least B2 to be of the order of unity. The quantity B2

[cf. Eq. (12)] has a coefficient a which is of order of 1=N
because there is only a single localized mode that becomes

unstable [9], and the divergent term that goes like ð��
�PÞ�3=2. Thus we expect predictability when j�� �Pj �
N�2=3, which estimates � ¼ �2=3. Higher order deriva-
tives are more singular and thus � can only be smaller due
to their effect. This estimate is very important, since it
guarantees that predictability will not deteriorate in the
elastoplastic steady state. To see this, we recall that the
average distance between successive plastic events h��i is
known [13] to follow a scaling law with the system size
h��i � N�. The exponent � was measured in a variety of
systems in two dimensions, and was found to be always in
the range [� 0:67,�0:63]. In the present model system we
measure � � �0:65. With the present accuracy we cannot

exclude that � � �, leading to the realization that while
the predictability is reduced with increasingN, the range of
� over which we need to predict reduces almost at the same
speed, if not slightly faster. Thus in effect the predictability
in the elastoplastic steady state does not deteriorate withN.
In summary, we showed that (i) the discussion of plas-

ticity in amorphous solids calls for understanding the role
of nonlinear elasticity, and (ii) for the elastoplastic steady
state the knowledge of a few nonlinear elastic constants
suffices to predict where the next plastic event should
occur. Finally, the analysis presented above is global, but
it can be extended to local instability maps eliminating the
system size dependence whatsoever. The first step toward a
local analysis, which is the microscopic definition of the
nonlinear elastic constants, has been already achieved and
is available in Ref. [15]. The second step where it will be
shown how to use these results in models of elastoplasticity
in both two and three dimensions will be discussed else-
where [16].
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FIG. 4 (color online). Log-log plot of the range of strain j��
�Pj where ��P=��P � 0:15 as a function of the system size in
the elastoplastic steady state. The slope of the continuous fit line
is � ¼ �0:61. The inset shows how the measurement is done,
ðiÞ=ðiiÞ � 0:15.

PRL 104, 215502 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
28 MAY 2010

215502-4

http://dx.doi.org/10.1088/0305-4608/11/11/004
http://dx.doi.org/10.1140/epje/i2007-10324-y
http://dx.doi.org/10.1103/PhysRevLett.93.175501
http://dx.doi.org/10.1103/PhysRevB.71.184108
http://dx.doi.org/10.1103/PhysRevE.80.026112
http://dx.doi.org/10.1103/PhysRevE.77.061509
http://dx.doi.org/10.1103/PhysRevE.77.061509
http://dx.doi.org/10.1103/PhysRevLett.93.195501
http://dx.doi.org/10.1103/PhysRevLett.93.195501
http://dx.doi.org/10.1103/PhysRevLett.81.5576
http://dx.doi.org/10.1103/PhysRevLett.81.5576
http://dx.doi.org/10.1103/PhysRevLett.93.016001
http://dx.doi.org/10.1103/PhysRevLett.93.016001
http://dx.doi.org/10.1007/s10955-005-9015-5
http://dx.doi.org/10.1007/s10955-005-9015-5
http://dx.doi.org/10.1103/PhysRevE.79.066109
http://dx.doi.org/10.1103/PhysRevE.79.066109
http://arXiv.org/abs/1004.2198

