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We provide a full quantum mechanical analysis of a weak energy measurement of a driven mechanical

resonator. We demonstrate that measurements too weak to resolve individual mechanical Fock states can

nonetheless be used to detect the nonclassical energy fluctuations of the driven mechanical resonator, i.e.,

‘‘phonon shot noise’’. We also show that the third moment of the oscillator’s energy fluctuations provides

a far more sensitive probe of quantum effects than the second moment, and that measuring the third

moment via the phase shift of light in an optomechanical setup directly yields the type of operator

ordering postulated in the theory of full-counting statistics.
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Introduction.—There has been considerable interest re-
cently in preparing and detecting quantum mechanical
behavior in mechanical resonators. This general goal has
been pursued using both optomechanical systems [1]
(where the mechanics is coupled to an optical cavity) and
electromechanical systems [2–6] (where the mechanics is
coupled to an electrical circuit). Not only do such studies
attempt to test quantummechanics in a new regime of large
mass, they also have the potential of furthering our under-
standing of quantum dissipative processes and the bound-
ary between classical and quantum physics.

A simple example of truly quantum behavior is the
energy quantization expected of a quantum oscillator.
Detecting this quantization directly by, e.g., observing
quantum jumps between different Fock states [7], is ex-
tremely challenging [8–10]. One requires a detector which
couples directly to the energy of the mechanical oscillator,
not to its position x̂ as is more common; further, this
coupling must be strong enough to resolve a mechanical
energy quantum within the lifetime of a Fock state. Recent
optomechanical experiments [10] have demonstrated cou-
pling to x2, which is equivalent to energy in the rotating
wave approximation. However, it remains a challenge to
satisfy all of the requirements for achieving a practical
quantum nondemolition (QND) measurement of individual
quantum jumps.

As a result, it would be desirable to detect energy
quantization in a mechanical oscillator using only the
presently existing resource of a detector that couples
weakly to energy. This is the goal of this Letter. Similar
to previous studies, we consider the QND measurement of
the energy fluctuations of a dissipative mechanical resona-
tor, but now consider the case where the mechanical reso-
nator is strongly driven. This drive will result in a large
average number of quanta in the resonator, �n � 1. Our

focus will be on the fluctuations of energy about this
average value; in the low-temperature limit, these fluctua-
tions are completely quantum in nature and reflect the
discreteness of the oscillator’s energy. As the magnitude
of this ‘‘phonon shot noise’’ scales with the magnitude of
the applied drive, one can make it large enough to detect
even if the detector-oscillator coupling is too weak to
resolve individual Fock states. We show that this is pos-
sible even in the presence of strong cavity cooling, which is
necessary to ensure that the phonon shot noise dominates
the thermal noise. We also analyze the fundamental back-
action of the measurement. We show that if the mechanical
resonator is driven on resonance, the measurement is back-
action evading, having a formal equivalence to a single-
quadrature position measurement [11]. As such, there is no
fundamental quantum limit on the continuous monitoring
of phonon shot noise.
Our study also reveals new physics associated with the

energy fluctuations of a driven quantum resonator, namely,
that higher moments of the fluctuations are far more sensi-
tive to the difference between the quantum and classical
limit than the second moment.
Model.—We consider a generic setup in which a detector

is weakly coupled to the energy of a damped, driven

mechanical resonator. We let F̂ denote the detector quan-
tity which directly couples to the oscillator number opera-

tor n̂ ¼ ĉyĉ, and Î denotes the detector quantity that is
monitored. We take @ ¼ 1. The Hamiltonian is:

Ĥ¼!Mĉ
yĉþĤ��fðei!DtĉþH:c:ÞþĤdetþ F̂ � n̂: (1)

Here Ĥ� describes the damping (at a rate �) of the me-

chanical resonator by a thermal bath, f is the mechanical

driving amplitude (!D ¼ !M þ �), and Ĥdet is the detec-
tor Hamiltonian. The drive f yields an average number of
mechanical quanta hn̂i � �n ¼ 4f2=ð4�2 þ �2Þ. An ex-
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ample of such a system is the ‘‘membrane-in-the-middle’’
optomechanical system discussed in Refs. [10,12,13]. The
detector here is a driven optical cavity whose frequency!R

depends quadratically on the displacement of a dielectric
membrane placed in the cavity. Within a rotating-wave
approximation, one obtains the desired coupling to n̂,

with F̂ ¼ An̂cav, where n̂cav is the cavity photon number
and A ¼ ðd2!R=dx

2Þx2zpt is the quadratic optomechanical

coupling. The output operator Î here would correspond to
the error signal in a Pound-Drever-Hall scheme used to
monitor the cavity frequency (and hence n̂). Quadratic
optomechanical couplings could also be realized in other
ways (see, e.g., Fig. 1 in Ref. [11]).

For the weak coupling situation we focus on, linear

response theory applies, implying hÎðtÞi ¼ �hn̂ðtÞi, where
� is the detector response coefficient. We focus on the
experimentally relevant limit where the oscillator energy
evolves slowly enough that we can ignore the frequency
dependence of �. A calculation yields the symmetrized

noise spectrum of Î at low frequencies:

�SII½!� ¼ �2ð �Snn;imp þ �Snn½!� þ �Snn;BA½!�Þ; (2a)

�Snn½!� ¼ �nð1þ 2nthÞð�½!þ �� þ �½!� ��Þ; (2b)

where �½!� ¼ ð�=2Þ=ð!2 þ �2=4Þ, and � is the total
damping of the mechanical oscillator. Given the large
mechanical drive, we retain only leading terms in �n � 1.
The first term in Eq. (2a), �Snn;imp, describes the intrinsic

output noise floor of the detector (i.e., the imprecision
noise), while the second term corresponds to the amplified
number fluctuations �Snn of the mechanical resonator. These
number fluctuations [cf. Eq. (2b)] have both a quantum
shot-noise part which is nonvanishing at zero-temperature
and a classical part proportional to the effective number of
thermal quanta in the oscillator, nth. Finally, the third term
in Eq. (2a) describes a backaction contribution to the out-
put spectrum: by virtue of the detector-oscillator coupling

in Eq. (1), fluctuations of F̂ will result in fluctuations of the
mechanical oscillator frequency, thus enhancing its num-
ber fluctuations and yielding extra noise in the output.

Resolving phonon shot noise.—We begin by ignoring the
effects of backaction. A first requirement is to have the
quantum shot-noise contribution to �Snn overwhelm the
classical, thermal contribution. We thus require a cold
oscillator, nth � 1. In the optomechanical setup, this could
be achieved by using a second, linearly coupled, optical
mode whose linewidth is smaller than !M to laser cool the
mechanical mode, as discussed in Refs. [14–16]; this
method allows ground-state cooling even in the presence
of a strong mechanical drive [17]. A simultaneous use of

different optical modes for cooling and measurement can
be achieved in the device of Ref. [13]. The use of laser-
cooling comes at a price: it increases the total mechanical
oscillator damping compared to its intrinsic value �0. This
in turn reduces the resolvability of the oscillator peak in the
output spectrum. One has the simple relation � ¼
�0ðnbath=nthÞ, where nbath is the bath temperature (ex-
pressed as a number of quanta).
Resolving the peak associated with �Snn½!� in the output

spectrum corresponds to continuously measuring the pho-
non shot noise. Even without backaction effects, it is not
clear that this is feasible, given both that strong cooling is
required, and that the intrinsic detector-oscillator coupling
is weak. As a measure of the resolvability of the phonon
shot noise, we consider the peak-to-noise ratio S �
�Snn½0�= �Snn;imp. In the interesting limit nth ! 0, �n � 1,

and taking � ¼ 0 for a maximal S, we find

S ¼ 4 �n=�
�Snn;imp

¼ 4 �n
�Snn;imp�0

�0

�
¼ 8 �nnth�

ð0Þ: (3)

Here, �ð0Þ ¼ 1=ð2�0nbath �Snn;impÞ is the signal-to-noise ra-

tio introduced in Ref. [10] associated with resolving a
single mechanical quantum jump. The fact that S / nth
reflects the increase in � associated with cavity cooling.
We see that with a suitably strong mechanical drive, S > 1

even though the measurement strength is weak (i.e.,�ð0Þ <
1) and though a significant amount of backaction cooling is
required (i.e., nth � 1 � nbath).
We can apply our general analysis to the device of

Ref. [13] (see Table I for parameters). This device achieves
values of @2!R=@x

2 up to �103 greater than in Ref. [10]
while maintaining negligible optical absorption [13]. We
assume the device is precooled inside a cryostat to a bath
temperature T ¼ 300 mK, making laser cooling to nth < 1
feasible [15,16]. We also assume the membrane is driven to
an amplitude of 2 nm. This is below the onset of dynamical
bistability in these devices [18], and corresponds to mean
phonon number �n ¼ 4:76� 1012. The resulting peak-to-
noise ratio is S ¼ 7:9. Thus, by combining the measure-
ment scheme presented here with the enhanced @2!R=@x

2

demonstrated in Ref. [13], it should be possible to observe
energy quantization. This is in sharp contrast to the pro-
posal for detecting individual phonons in an optomechani-
cal device, which would require substantial improvements
to the membrane, the cavity, and their coupling [10].
Backaction.—We now consider the effects of the funda-

mental measurement backaction. These result from fluctu-

ations of the input operator F̂, which lead to frequency
noise of the mechanical oscillator and enhanced mechani-

TABLE I. Optomechanical device parameters. m, !M, Q: membrane mass, resonance frequency, and quality factor. F, L, Pin: cavity
finesse, length, and input power. T: bath temperature. With the exception of T and nth these parameters are those of the device
demonstrated in Refs. [13,18]. They allow a peak-to-noise ratio S ¼ 7:9 for the phonon shot-noise measurement.

m: 40 ng !M

2� : 1 MHz Q: 1:2� 107 F: 5� 104 L: 63 mm Pin: 5 �W T: 300 mK @2!R

@x2
: 0:9 MHz=nm2 nth: 0.2
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cal energy fluctuations. One might expect that to prevent
this backaction contribution from obscuring the phonon
shot-noise signature, there will be a limit to how large one
can make �n, and hence a limit on the maximum signal-to-
noise ratio S in Eq. (3). A similar situation arises in the
continuous monitoring of zero-point position fluctuations,
where the peak-to-noise ratio S 	 3 [19].

To analyze the effects of backaction in the large �n limit,

we let d̂ denote the fluctuations of the mechanical oscil-

lator annihilation operator from its average value: ĉðtÞ ¼
e�i!Dt½ ffiffiffi

�n
p

ei� þ d̂ðtÞ�. In the rotating frame, the mechani-

cal oscillator Hamiltonian takes the form ĤM ¼ ��d̂yd̂.
Further, to leading order in �n, the oscillator number

operator becomes n̂ðtÞ ’ �nþ ffiffiffi
�n

p
X̂ðtÞ and the coupling

Hamiltonian Ĥint ¼
ffiffiffi
�n

p
F̂ X̂ , where X̂ðtÞ ¼ ½e�i�d̂ðtÞ þ

ei�d̂yðtÞ�. Measuring the oscillator energy thus corre-

sponds to a measurement of the ‘‘position’’ operator X̂,
and a continuous measurement of the phonon shot noise to

a measurement of the zero-point fluctuations of X̂. As with
standard continuous position detection, there will in gen-
eral be a backaction associated with this measurement, as

X̂ does not commute with ĤM. However, in the special case

of a resonant oscillator drive (i.e., � ¼ 0), ĤM vanishes. X̂
is thus trivially a QND observable that can be measured
without a backaction limit. Thus, for a resonant drive, and
to leading order in �n, there is no backaction associated with
the phonon shot-noise measurement; we thus anticipate
that there is no backaction-induced quantum limit on S.
Formally, the measurement of phonon shot noise in this
large- �n limit corresponds to a ‘‘QND in time’’ measure-
ment of a single motional quadrature [11].

To verify the lack of backaction limit, we need to
describe the leading nonvanishing backaction contribution

when � ¼ 0. This arises from the term d̂yd̂ in n̂ that was

neglected above. Treating the fluctuations of F̂ as being
Gaussian (as is appropriate for the weak couplings we
consider), we find that the leading-order backaction-driven

number fluctuations are given by �Snn;BA½0� ¼ 4 �n2

� ð �SFF� Þ2.
The total added noise of the measurement includes this
contribution, plus the imprecision noise of the de-
tector [first term in Eq. (2a)]. The total added noise
can be represented as an effective number of thermal
oscillator quanta nadd via nadd ¼ ð �Snn;imp þ Snn;BA½0�Þ=
ð2Snn½0; nth ¼ 0�Þ. Assuming our detector has quantum-
limited noise properties and thus optimizes the
Heisenberg noise inequality �Snn;imp

�SFF 
 1=4 [19], we

find that for a fixed value of �n, the minimal possible value
of nadd is given by

naddjmin ¼ 3

16ð2 �nÞ1=3 ; (4)

where the minimum is achieved for an optimal measure-

ment strength satisfying �Snn;imp� ¼ ð32 �n2Þ1=3. We thus see

that even with the inclusion of backaction effects, the
added noise of the measurement (referred back to the

oscillator) can be made arbitrarily small by driving the
oscillator on resonance with a sufficient strength. Note
that this is not true if one drives the oscillator off reso-
nance. In this case, even in the limit �n ! 1, the added
noise nadd cannot be made smaller than j�=�j. The device
described in Table I is not optimally coupled, but back-
action effects nonetheless only yield nadd ’ 6� 10�8.
Finally, in the optomechanical realization of our scheme,

one must also consider the backaction mechanism ana-
lyzed in Ref. [20]. This mechanism is absent in the ideal
case of a one-port cavity; in the more general case of a two-
port cavity, the constraint set by this mechanism on the
cavity damping is much weaker for our scheme than for a
single-phonon measurement, as our scheme utilizes much
smaller optomechanical couplings.
Nonclassical higher moments.—While the phonon shot

noise described by the zero-temperature limit of Snn½!� is
a completely quantum phenomenon, its form is not so
different from the classical, high-temperature prediction
for the energy fluctuations of a driven oscillator. The
quantum, zero-temperature limit of Snn½!� is simply ob-
tained by taking the corresponding high-temperature clas-
sical expression [second term in Eq. (2b)], and replacing
nth with 0.5. In other words, the quantum shot noise is
identical to the classical expression evaluated at a tempera-
ture T ¼ @!=2kB. The energy fluctuations of a driven
oscillator are however not Gaussian. We now show that
this simple correspondence between classical and quantum
distributions fails starting with the third moment.
For simplicity, we consider the fluctuations of the time-

integrated phonon number m̂ ¼ R
t
0 dt

0n̂ðt0Þ in the long-time

limit. Experimentally, one would attempt to measure this
quantity by time-integrating the detector output IðtÞ; its
mean is simply given by hm̂i ¼ hn̂it. In considering the
second and higher moments of m̂ quantum mechanically,
care must be taken to account for the fact that n̂ðtÞ opera-
tors at different times do not commute. One must treat the
entire measurement quantum mechanically (not just the
oscillator) to extract the proper definition of the higher
moments as measured in the experiment.
The above ordering problem has been addressed exten-

sively in the study of the counting statistics of electron
transport through phase coherent conductors. Several dif-
ferent models of an ideal measurement yield the same
definition for the higher moments, the so-called Keldysh
ordering [21,22]. For the second central moment, one
obtains in the long-time limit hhm̂2ii ¼ �Snn½0�t, as would
be obtained directly from the definition of m̂. However, for
the third central moment, a far less obvious answer is given
(�n̂ � n̂� hn̂i)

hhm̂3iiK ¼
Z t

0
dt1

Z t

0
dt2

Z t

0
dt3gh�n̂ðt1Þ�n̂ðt2Þ�n̂ðt3Þi;

g ¼ 3

2
½1� �ðt1 � t2Þ�ðt3 � t2Þ�: (5)

The classical definition would simply have g ¼ 1; instead,
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the quantum answer involves neglecting contributions to
the integral where the middle n̂ operator appears at the
earliest time. This ordering follows from a consideration of
how the measured operator n̂ influences the evolution of
the density matrix of the detector [21,22]. Importantly, one
can derive Eq. (5) explicitly for the single-port version of
the optomechanical system discussed above. To see this,
we assume that the output field from the cavity is subjected
to homodyne detection, and that the mechanical damping
is much smaller than the cavity damping. Using standard
input-output theory [19], the output field from the mixer

used in the homodyne setup will have the form b̂ðtÞ ¼ �þ
Bn̂ðtÞ, where � parameterizes the large magnitude of the
classical reference beam used, B is a constant proportional
to the optomechanical coupling, and we omit terms de-

scribing shot noise. The intensity Î ¼ b̂yb̂ is then mea-

sured using a photodetector; �Î ¼ b̂yb̂� �2 is the output
of the measurement.

As �Î / n̂, the third moment of m̂ will be proportional

to the third moment of
R
dt�ÎðtÞ. Experimentally, this

would be directly obtained from the observed third mo-
ment of the number of photons detected in the output port
of the homodyne setup within a given time interval. To
calculate this quantity, one has to use Glauber photo-
detection theory [23]. In particular, the third-order inten-

sity correlation will be given by h:Iðt1ÞIðt2ÞIðt3Þ:i ¼
hb̂yðtaÞb̂yðtbÞb̂yðtcÞb̂ðtcÞb̂ðtbÞb̂ðtaÞi, where ta < tb < tc de-
notes the time-ordered listing of t1, t2 and t3. By thus
calculating the leading contribution (in �) to the third
moment of the number of detected photons in the output
port of the homodyne setup, one directly recovers the
Keldysh ordering described by Eq. (5). To our knowledge,
this is the first demonstration of how the Keldysh ordering
arises in a realistic measurement setup.

Applying this definition to our system, we find

hhm3ii ¼ 6 �nt

�2

�
3� 4ð�=�Þ2 þ 16nthðnth þ 1Þ

ð1þ 4�2=�2Þ2
�
: (6)

We have neglected a purely thermal contribution to Eq. (6)
which is independent of �n. In the high-temperature classi-

cal limit (i.e., nth � 1), the skewness of m̂ is always
positive, and the dependence on the detuning � of the
mechanical drive enters only through the oscillator’s sus-
ceptibility. In contrast, in the quantum limit nth ! 0, the
skewness can be positive or negative depending on �
(Fig. 1). Thus, the third moment of energy fluctuations
has a much greater sensitivity to whether one is in the
quantum or classical limit: the quantum expression does
not simply correspond to evaluating the classical expres-
sion at an effective temperature T ¼ @!M=2kB. Note that
the use of the proper Keldysh ordering is crucial to obtain-
ing Eq. (6). Note also that the full distribution of the driven
oscillator’s energy fluctuations can be directly obtained
using the approach of Ref. [24].
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FIG. 1 (color online). (a) Third moment hhm3ii of integrated
energy fluctuations resulting from phonon shot noise, as a
function of the drive detuning �, for different nth. (b) Zoom of
plot in (a), showing that at low temperatures, hhm3ii can become
negative in the quantum limit.
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