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We present some of the universal properties in ion-atom interaction derived from a newly formulated

quantum-defect theory for the �1=r4 type of long-range interactions. For bound states, we present the

universal bound spectrum, namely, the equivalent of the Rydberg formula, for ion-atom systems. For

scattering, we introduce the concept of a universal resonance spectrum to give a systematic understanding

of many resonances present in ion-atom scattering. The theory further provides a method for an accurate

spectroscopic determination of the atomic polarizability. It also suggests the existence of atomlike

molecules, in which multiple atoms orbit around a heavy ion.
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As experimental techniques for preparing and manipu-
lating cold atomic ions improve [1], there is a rapidly
growing interest in ion-atom interactions at ultracold tem-
peratures [2–5]. While it is intuitively clear that an ion can
exert a much stronger influence on its environment than
either an atom or a molecule, the precise nature of this
influence, especially at the quantum level, is far from being
understood. For example, an ion-atom system is one of the
few types of two-body systems for which their loosely
bound states, namely, the highly excited rovibrational
states right below the dissociation limit, are yet to be
observed experimentally or fully characterized theoreti-
cally [6].

This work presents part of a newly formulated quantum-
defect theory (QDT) for ion-atom interactions. It gives
precise explanation and characterization of the meaning
and the consequence of the ‘‘strong influence’’ of an ion on
a neighboring atom. On a more technical level, it is a
version of the QDT for�1=r4 type of long-range potential
[7–9] that brings our understanding of ion-atom interac-
tions to the same level as, and in certain areas exceeding,
our current understanding of ultracold atom-atom interac-
tions [10]. The theory is a result of combining conceptual
developments, built further upon Refs. [11–13], with im-
proved mathematical understanding of the modified
Mathieu functions [14–16], especially for negative ener-
gies. The latter development, which allows for the efficient
determination of all QDT functions for�1=r4 potential, is
achieved by solving the modified Mathieu equation using
techniques we have previously developed for the analytic
solutions of 1=r6 [17] and 1=r3 [18] potentials.

We focus here on the universal spectrum for ion-atom
interactions. For bound states, it is the equivalent of the
Rydberg formula for �1=r4 type of long-range potential,
formulated in a way to take advantage of the angular mo-
mentum insensitivity of the short-range parameter that is a
characteristic of atom-atom and ion-atom interactions
[11,13,19]. It allows for the determination of the entire ro-
vibrational spectrum in the threshold region from a single
short-range parameter, such as the quantum defect. More

importantly, the concept of universal spectrum is general-
ized here to positive energies to include scattering reso-
nance positions. It facilitates a systematic understanding of
many resonances that are present in ion-atom scattering
[2,4,5], within the same framework, and using the same
short-range parameter, as the bound spectrum. A number
of more specific results will be extracted out of the univ-
ersal spectrum, including the energy bins [10,12] that
contain various loosely bound states or scattering reso-
nances. Furthermore, we show that there exists a critical
energy, below which all scattering resonances have posi-
tive widths that correspond to time delay [20], and above
which all scattering resonances have negative widths that
correspond to time advance [20]. Such concepts, together
with the concept of universal width function to be briefly
discussed there, provide what we believe to be the first
systematic understanding of the global structure of scatter-
ing. Conceptually, they are expected to be generally appli-
cable to all quantum systems with �1=rn type of long-
range potential with n > 2. We briefly outline selective
qualitative features of ion-atom interaction before getting
to the mathematical formulation and the results of the
theory.
Like other quantum systems around the threshold, ion-

atom interaction in the ultracold regime is determined
primarily by its long-range interaction. Assuming that the
atom involved has no permanent quadrupole, such as the
case for alkali-metal atoms in their ground states, the long-
range ion-atom interaction has the form of VðrÞ � �C4=r

4

where C4 is related, in atomic units, to the static dipole
polarizability of the atom, �1, by C4 ¼ �1=2. The quali-
tative features of ion-atom interaction can be understood

through the length scale,�4 ¼ ð2�C4=@
2Þ1=2, and other re-

lated scale parameters that are associated with the long-
range potential. Table I gives samples of such parameters
for alkali-metal systems. The length scale �4 is a measure
of the size of the last few loosely bound states. The corre-
sponding energy scale, sE ¼ ð@2=2�Þð1=�4Þ2, sets the
scale for their energy spacing. The related time scale sT ¼
@=sE sets the scale for, e.g., the lifetime of a shape reso-
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nance, and ��2
4 sets the scale for low-energy scattering

cross section.
A large length scale �4 is what characterizes the ‘‘strong

influence’’ of an ion on its environment. From Table I, it is
clear that ion-atom interaction has a much longer length
scale than either the atom-atom interaction, with a corre-
sponding length scale of �6 � 100 a:u:, or the electron-
atom interaction, with a corresponding length scale of
�4 � 10 a:u: More importantly, the �4 for ion-atom is
hundreds times greater than r0, the distance below which
the ion-atom interaction starts to deviate from the �C4=r

4

behavior, and which can be estimated to be of the order of
r0 � 10–30 a:u:. The implication of this large scale sepa-
ration is that an ion-atom system typically supports thou-
sands of bound states, and, from Levinson theorem [23],
thousands of scattering resonances, with many of them
around the threshold following the universal behavior as
described by the angular-momentum-insensitive formula-
tion of the quantum-defect theory (AQDT) [11,13].

Universal bound spectrum.—In AQDT [11,13], the
bound spectrum of a two-body system with �1=rn (n >
2) type of long-range potential is given rigorously by the
solutions of

�cðnÞ
l ð�sÞ ¼ Kcð�; lÞ: (1)

Here the �cðnÞ
l function is a universal function of a scaled

energy, �s ¼ �=sE, that is uniquely determined by the
exponent of the long-range interaction n and the angular
momentum l. All the short-range physics is encapsulated in
the parameter Kcð�; lÞ. It is a short-range K matrix that is a
meromorphic function of both � and l [13]. The Kc pa-
rameter is further related to the quantum defect �c, which
is defined to have a range of 0 � �c < 1, by Kcð�; lÞ ¼
tan½��cð�; lÞ þ �b=2� where b ¼ 1=ðn� 2Þ [13].

For n ¼ 4, we have obtained all QDT functions of
Ref. [13] through an improved understanding of the modi-
fied Mathieu equation [14–16]. In particular, we have

obtained the universal �cðnÞ
l function for n ¼ 4:

�cð4Þ
l ¼ tanð��=2Þ 1þM2

�sl

1�M2
�sl

; (2)

where � is the characteristic exponent for �1=r4 type of
potential [14–16,24], and

M�slð�Þ ¼ 2�2�j�sj�=2
�
�½1� ð�þ �0Þ=2�
�½1þ ð�þ �0Þ=2Þ�

�

�
�
�½1� ð�� �0Þ=2�
�½1þ ð�� �0Þ=2�

��
C�slð��Þ
C�slðþ�Þ

�
; (3)

in which �0 ¼ lþ 1=2,

C�slð�Þ ¼
Y1
j¼0

Qð�þ 2jÞ; (4)

with Qð�Þ being given by a continued fraction

Qð�Þ ¼ 1

1� �s
½ð�þ2Þ2��2

0
�½ð�þ4Þ2��2

0
�Qð�þ 2Þ : (5)

Equations (1) and (2) give the universal bound spectrum
for �1=r4 type of long-range interaction. Figure 1 gives
one of its possible graphical representations, in combina-
tion with the universal resonance spectrum to be discussed
next.
Universal scattering properties.—In AQDT, the single-

channel scattering properties are determined from [13]

Kl � tan�l ¼ ðZcðnÞ
gc Kc � ZcðnÞ

fc ÞðZcðnÞ
fs � ZcðnÞ

gs KcÞ�1; (6)

where ZcðnÞ
xy ð�s; lÞ are again universal QDT functions that

are uniquely determined by the long-range exponent n and
the angular momentum l [13].
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FIG. 1 (color online). The universal spectrum for two-body
quantum systems with �1=r4 type of interactions, including
both the universal bound spectrum for � < 0, where the y-axis
is defined as �ð��sÞ1=4, and the universal resonance spectrum
for � > 0, where the y-axis is defined as ð�sÞ1=4. For any two-
body quantum system with �1=r4 type of long-range potential,
the bound spectrum and the resonance spectrum are given by the
cross points between the curves plotted and the curves represent-
ing �cð�; lÞ. For systems such as ion-atom, for which �4 � r0,
�cð�; lÞ is approximately an l-independent constant, allowing the
determination of the entire rovibrational spectrum, and the
resonance spectrum, from a single parameter, as illustrated by
a vertical line in the figure.

TABLE I. Sample scale parameters for ion-atom systems. C4,
in atomic units, is given by �1=2 where �1 is the static dipole
polarizability of the atom. The �4 ¼ ð2�C4=@

2Þ1=2 is the length
scale. The sE ¼ ð@2=2�Þð1=�4Þ2 is the corresponding energy
scale. It is given both in units of microkelvin and in units of kHz.

System C4 (a.u.) �4 (a.u.) sE=kB (�K) sE=h (kHz)

87Rbþ � 6Li 82.06a 1297 9.148 190.6
87Rbþ � 23Na 81.30b 2321 0.8841 18.42
6Liþ � 6Li 82.06a 948.5 32.01 667.0

23Naþ � 23Na 81.30b 1846 2.212 46.08
40Kþ � 40K 145.1b 3251 0.4101 8.545

133Csþ � 133Cs 199.9b 6959 0.026 91 0.5608

aUsing �1 from Ref. [21].
bUsing �1 from Ref. [22].
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We use here the definition of scattering resonance posi-
tions as energies at which sin2�l ¼ 1, namely, the energies
at which the scattering cross section reaches its unitarity
limit [24]. Such locations can be determined as the roots of

the denominator in Eq. (6). Defining a generalized �cðnÞ
l

function for positive energies as ~�cðnÞ
l ð�sÞ � ZcðnÞ

fs =ZcðnÞ
gs ,

the resonance positions can be formulated in a similar
fashion as the bound spectrum, as the solutions of

~� cðnÞ
l ð�sÞ ¼ Kcð�; lÞ: (7)

For n ¼ 4, we have obtained

~� cð4Þ
l ¼ tanð��=2Þ 1� ð�1ÞlM2

�sl
tan½�ð�� �0Þ=2�

1þ ð�1ÞlM2
�sl

tan½�ð�� �0Þ=2�
;

(8)

in which �, �0, and M�sl are the same as those defined

earlier in relation to the bound spectrum.
Equations (7) and (8) give the universal resonance spec-

trum for �1=r4 type of long-range interaction. The � > 0
portion of Fig. 1 gives one of its possible graphical repre-
sentations. Similar to a bound spectrum, which describes,
over a set of discrete energies, the rise of a phase from zero
to a finite value at the threshold, a resonance spectrum
describes its subsequent evolution back towards zero. For a
scattering resonance located at �sl, which is one of the
solutions of Eq. (7), the width of the resonance, again
derived from Eq. (6), is given by

	lð�slÞ ¼ �2

�
d~�cðnÞ

l

d�s

���������sl

½ZcðnÞ
gs ð�sl; lÞ�2

��1
: (9)

It shows that while the position of a scattering resonance
depends on the short-range parameter, the width of the
resonance, as a function of the resonance position, follows
a universal behavior that is uniquely determined by the
long-range interaction. We call Eq. (9) the universal width
function.

There are a number of conclusions that can be drawn
from the universal spectrum. We give here a brief sum-
mary, with more complete discussions to be given else-
where. (i) For ion-atom systems, namely, systems with
�4 � r0, the universal spectrum allows the determination
of the entire rovibrational spectrum and the entire reso-
nance spectrum in the threshold region, including states of
different l, using a single parameter, assuming �1 is known
accurately. This single parameter can be determined from
the measurement of either a single bound state energy [11],
or a single resonance position. (ii) From measurements of
two or more bound state energies and/or resonance posi-
tions, and using the method of Ref. [11] and its general-
izations, the universal spectrum can give not only an
accurate prediction of the entire spectrum, but also an
accurate, spectroscopic determination of the atomic dipole
polarizability, with no knowledge required of the details of
the atomic interaction at short distances [11]. The accuracy
that can be expected with such a measurement is conser-
vatively estimated to be 10�6, far better than the best
achieved using atomic interferometry [25]. (iii) The mea-
surements of bound state energies and resonance positions
are further facilitated by the energy bin concept [10,12]
embedded in the universal spectrum. They give ranges of
energies in which a certain state is to be found, as explained
and tabulated in Table II and illustrated in Fig. 2. The
earlier version of the concept [10,12] has been generalized
here to include bins for resonance states. (iv) The proper-
ties of the ~�c

l functions show that there exists a critical

energy for each l, BcðlÞ, defined by d~�cðnÞ
l =d�sjBcðlÞ ¼ 0.

Below BcðlÞ, ~�cðnÞ
l is a piecewise monotonically decreasing

function of energy with d~�cðnÞ
l =d�s < 0, which, from

Eq. (9), implies that all resonances occurring in this region
have positive widths corresponding to time delays [20].

Above BcðlÞ, ~�cðnÞ
l evolves into a piecewise monotonically

increasing function of energy with d~�cðnÞ
l =d�s > 0, imply-

ing that all resonances above BcðlÞ have negative widths

TABLE II. Energy bins for the first few partial waves. The ith bound state of angular momentum l, with i ¼ 1 corresponding to the
least-bound state, is to be found within B�i � �s < B�iþ1 for i > 1, and within B�1 � �s < 0 for i ¼ 1. Shape resonances of angular
momentum l can only exist between 0< �s < Bc. The ith diffraction resonance of angular momentum l, defined as a resonance with
negative width, is to be found within Bi�1 < �s � Bi for i � 1. A zeroth diffraction resonance may exist within Bc < �s � B0,
depending on the quantum defect.

Bx l ¼ 0 l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4

B4 4782.3 10 266 19 073 32 206 50 780

B3 1734.9 4480.1 9371.7 17 218 28 940

B2 442.02 1553.1 3886.6 8057.0 14 792

B1 52.766 350.37 1199.8 3021.3 6348.0

B0 0 20.514 174.75 687.38 1896.0

Bc 0 4.8878 35.505 120.16 292.38

B�1 �105:81 �336:54 �753:97 �1407:4 �2345:8
B�2 �1179:9 �2432:9 �4284:6 �6835:1 �10 184
B�3 �5207:5 �8840:6 �13 708 �19 961 �27 750
B�4 �15308 �23 247 �33 279 �45 607 �60 433
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corresponding to time advances [20]. Such resonances will
be called diffraction resonances [24] to distinguish them
from shape resonances, which have positive widths. We
note that the incorporation of diffraction resonances into
the resonance spectrum is essential to complete the physi-
cal picture of the evolution of the phase back towards zero.
(v) The universal spectrum gives the maximum number of
shape resonances that can exist for a particular l. As can be
observed from Fig. 1, this number is one for l ¼ 1 through
4. Results for other l will be presented elsewhere, which
show, e.g., that the minimum l that can support two shape
resonances is l ¼ 7 for ion-atom interactions. (vi) The
results here provide explicit illustrations and confirmations
of the general properties of �1=rn (n > 2) type of inter-
actions derived earlier, such as the breakdown of the semi-
classical approximation around the threshold (see Ref. [13]
and the references therein), and the conclusion that the
least-bound state for an ion-atom system is either an s state
or a p state, depending on the quantum-defect [19].
(vii) The large size of an ion-atom bound state, as com-
pared to the range of atom-atom interaction, implies that a
heavy ion is likely to be able to bound multiple light atoms,
especially in different vibrational states (orbits), in which
atom-atom interactions are likely to be negligible. Such
states, which can be expected to be much more stable than
the states proposed by Côté et al. [3], are conceptually
similar to the doubly or multiply excited states of an atom,
except that the latter states have much shorter lifetimes due
to strong electron-electron interactions. It will be interest-
ing to find out how many atoms can be bound in such
states, and how their properties depend on their configura-
tions, and parameters such as the atom-ion mass ratio,
atomic statistics, and atom-atom scattering characteristics.

In conclusion, we have shown that in addition to the
more obvious aspect of having a large scattering cross

section, the ‘‘strong influence’’ of an ion on a neighboring
atom is reflected in the presence of a large number of
bound states and scattering resonances around the thresh-
old, a situation that would normally complicates its de-
scription. Fortunately, the very same strong influence, as
characterized by a large �4, simultaneously ensures that all
such states follow universal properties determined solely
by the long-range potential. Further studies of few-body
and many-body systems involving ions will help to reveal
their important roles in chemical reactions and in catalysis.
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FIG. 2 (color online). Illustrating definitions of energy bins,
and the critical energy Bc, using the case d wave. The ‘‘scaled
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multiple such curves for different l, except that they are turned
around for a better visualization of the spectrum.
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