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We compute the full dimension of the Konishi operator in planar N ¼ 4 super Yang-Mills theory for a

wide range of couplings, from weak to strong coupling regime, and predict the subleading terms in its

strong coupling asymptotics. For this purpose we solve numerically the integral form of the AdS/CFT

Y-system equations for the exact energies of excited states proposed by us and A. Kozak.
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Introduction.—Four-dimensional Yang-Mills (YM)
theories are at the heart of modern high energy physics,
describing all fundamental interactions except gravity.
Nevertheless, in spite of considerable efforts during almost
40 years, we still do not have a satisfactory quantitative
description of the most interesting YM theories, such as
QCD, in the region of intermediate and strong couplings.
The low energy quantum dynamics of YM field is mostly
known only from computer simulations of lattice YM
theories. A few important exact results concerned the
topological, protected sectors of N ¼ 1, 2 super Yang-
Mills (SYM) theory were obtained.

Recently, when the hopes on complete exact 4D solu-
tions, in particular, for the quantities given by nontrivial 4D
Feynman series seemed to start waning, N ¼ 4 super-
symmetric Yang-Mills theory gave us serious hopes for a
better understanding of the dynamics of strongly interact-
ing 4D gauge theories. Because of the anti-de Sitter space/
conformal field theory (AdS/CFT) correspondence [1], as
well as to the quantum integrability discovered on both
sides of this duality in the planar limit (when the number of
colors N ! 1 with the ’t Hooft coupling � ¼ g2YMN
fixed) [2–11], we acquire little by little tools for the
study of the most important quantities in N ¼ 4 SYM
theory, such as the spectrum of dimensions �ð�Þ of local
operators as functions of �—the scale independent cou-
pling constant in this superconformal 4D theory. The
weak coupling behavior (� ! 0) of �ð�Þ is given by
Feynman perturbation theory. The dual string world sheet

� model with the coupling g ¼ ffiffiffiffi
�

p
=4� allows us to find

the strong coupling asymptotics of various dimensions.
Integrability allows us to connect the two regimes. In
particular, the asymptotic Bethe ansatz (ABA) of [12] gives
us the asymptotic spectrum of single trace operators con-
taining an asymptotically large number of elementary
fields.

However, for short operators, such as the Konishi opera-
tor Tr½D;Z�2 [13,14], the calculation of anomalous dimen-
sions is still an interesting and important challenge.
Recently we proposed the Y system for the planar AdS/

CFT [15], a set of functional equations defining the anoma-
lous dimensions of all operators of planar N ¼ 4 SYM
theory at any coupling. The integral form of the Y system
for excited states in SLð2Þ sector, including the one corre-
sponding to the Konishi operator, was presented in [16].
The integral equations for the protected vacuum energy
were independently obtained in [17,18] by the thermody-
namical Bethe ansatz (TBA) technique based on the dy-
namics of bound states [19–25] (see also [9,26]) of the
mirror theory [27,28]. The solutions of the integral Y
system are also solutions of the functional Y system [16–
18,29]. The combination of functional and integral ver-
sions of the Y system appears to be quite efficient to
compute numerically the exact spectrum. In this work,
we use the functional form of the Y system to derive the
large volume (L) [30] asymptotic solution and then, de-
parting from it, we solve the integral form of the Y system
iteratively. As a demonstration of the power of our method,
we calculate numerically the dimension of the Konishi
operator in a wide range of the ’t Hooft coupling covering
both the weak and strong coupling regimes. The results
appear to be quite satisfactory: we manage to compute the
dimension of the Konishi operator in the interval of cou-
plings 0 & � & 700 and to confirm, within the precision of
our numerics, all the existing data concerning this quantity:
the perturbative results [31] up to 4 loops (up to �4 terms)

[32–35] and the large � asymptotics 2�1=4 matches the
prediction of [36] for the lowest level of the string spec-
trum. Fitting our numerical data with � > 60 we find (with
uncertainty in the last digit)

�K ¼ 2�1=4ð1:0002þ 0:994

�1=2
� 1:30

�
þ 3:1

�3=2
þ . . .Þ: (1)
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The leading term reproduces indeed the expected large �
behavior within our numerical precision. It was also argued
in [37] that the subleading coefficient ought to be an
integer (the next corrections could be transcendental

[38]). Indeed, our numerics seems to indicate that �K ¼
2�1=4 þ 2=�1=4 þ . . . thus predicting the value of this in-
teger. [39] We also obtained predictions for two further
subleading corrections (with a lower precision, of course).

Our results are represented in Fig. 1.
Y-system functional and integral equations for AdS/

CFT.—The Y system defining the spectrum of all local
operators in planar AdS/CFT correspondence reads [15]

Yþ
a;sY

�
a;s

Yaþ1;sYa�1;s

¼ ð1þ Ya;sþ1Þð1þ Ya;s�1Þ
ð1þ Yaþ1;sÞð1þ Ya�1;sÞ : (2)

where the functions Ya;sðuÞ correspond only to the nodes

marked by �, �, �, 4, d in Fig. 2 (we will use these
notations for Y functions in what follows). The one particle

energy at infinite length �ðaÞðuÞ ¼ aþ 2ig

x½�a� � 2ig

x½þa� is de-

fined through the Zhukovski map xðuÞ þ 1
xðuÞ ¼ u

g and

f½�a� � fðu� ia=2Þ, f� � fðu� i=2Þ for any function
fðuÞ. A solution of Y system with a given set of quantum
numbers defines the energy of a state (or dimension of an
operator in N ¼ 4 SYM theory) through the formula (3)
where the Bethe roots uj are fixed by the exact Bethe

ansatz equations Yd1
ðujÞ ¼ �1. In this Letter we restrict

ourselves to the integral form of the Y system for the
SLð2Þ-excited states obtained in [16]. Furthermore, we
focus ourself for simplicity on the Konishi operator where
we have only two roots u1 ¼ �u2 which we can encode

into the ‘‘Baxter functions’’ Rð�ÞðuÞ ¼ ½xðuÞ � x�1 � 	½xðuÞ � x�2 � and their complex conjugates BðuÞ ¼ �RðuÞ
where x�1;2 ¼ xðu1;2 � i=2Þ with the physical choice of

branches, such that jxðuÞj> 1, while for the free variable
xðuÞ we should use the mirror kinematics which corre-
sponds to the branches where ImðxðuÞÞ> 0 [28]. Unless it
is explicitly said otherwise, we will be always using this
latter choice in what follows. With the mirror choice, xðuÞ
has a semi-infinite cut for u 2 ð�1;�2gÞ [ ð2g;þ1Þ.
The energy of the Konishi state is computed from

�K ¼ 2þ 2�ð1Þðu1Þ þ
X1
a¼1

Z 1

�1
du

2�i
@u�

ðaÞ logð1þ Yda
Þ;

(3)

where the integral equations defining Yda
read [16]

logY�¼Km�1 
 logð1þ1=Y�m
Þ=ð1þY4m

Þ

þRð0mÞ 
 logð1þYdm
Þþ log

�RðþÞ

Rð�Þ

logY4n
¼Mnm 
 logð1þYdm

Þ�Kn�1ulogð1þY�Þ

�Kn�1;m�1 
 logð1þY4m
Þþ log

RðþÞ
n BðþÞ

n�2

Rð�Þ
n Bð�Þ

n�2

logY�n
¼Kn�1;m�1 
 logð1þ1=Y�m

ÞþKn�1ulogð1þY�Þ
logYdn

¼T nm 
 logð1þYdm
Þþ2Rðn0Þ

ulogð1þY�Þ
þ2N nm 
 logð1þY4m

Þþ i�n: (4)

We use here the kernels and sources defined in [16] and
presented in the Appendix for completeness. The integrals
in convolutionsK 
 f ¼ R

dvKðu; vÞfðvÞ go along the real
axis, but slightly below the poles in the terms involving Y42

(due to the last term in the corresponding integral equation,
see [16]). The convolutions u should be understood in the

sense of a B cycle (see [16]), e.g., Rðn0Þ
u logð1þ Y�Þ

stands forZ 2g

�2g
dv½Rðn0Þ logð1þ Y�Þ �Bðn0Þ logð1þ 1=Y�Þ�

where 1
Y�

is the analytical continuation of Y� across the cut

u 2 ð�1;�2gÞ [ ð2g;þ1Þ. Summation over the re-
peated index m is assumed with m � 2 for 4�m and
��m, and m � 1 for dm.
A remarkable feature of all these equations, crucial for

the success of our numerics and noticed in [16], is the
reality of all Y functions in the integral equations.

FIG. 1. Plot of �Kð�Þ � 2�1=4 from the numerical data com-
pared with the Bethe ansatz prediction and some fits. The fits in
this plot are done assuming the asymptotics �Kð�Þ ¼ 2�1=4 þ
2=�1=4 þ . . .

FIG. 2. T-shaped domain (T-hook) [43]. It defines the inter-
actions between Y’s in the AdS/CFT Y-system equations.
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Exact Bethe equations.—The Y system integral equa-
tions for the functions Ya;s need to be supplemented by the

exact Bethe equations Y
ph
d1
ðujÞ ¼ �1 which reproduce the

asymptotic Bethe equations of Beisert and Staudacher in
the large L limit [15]. To use this equation, we need to
analytically continue the last of Eq. (4) in the free variable
u from mirror to physical plane and then evaluate it at u ¼
u1. After some manipulations with contours we find

logY
ph
d1
ðu1Þ¼ ~T 1m 
 logð1þYdm

Þþ logZ42
ðu1Þþ i�phðu1Þ

þ2ðRð10Þ
ph;miruKm�1þK�

m�1Þ
p:v: logðZ4m
Þ

þ2Rð10Þ
ph;mirulogð1þY�Þ�2log

u1� i=2

i

�2
X2
j¼1

log

1
xþ
1

�xþj
1
x�1
�xþj

(5)

where 
p:v: stands for principal value integration, ~T 1m is

the dressing phase in the physical kinematics while i�ph is

the same as i� but evaluated in the physical region (see
Appendix). We used 1=Y�ðuj � i=2Þ ¼ 0 [following

from (4)] and denoted Z4m
¼ ð1þ Y4m

Þð1� 1=m2Þðu2 �
u21Þ�m;2 to isolate the poles in Y42

at u ¼ uj and to ensure

decreasing asymptotics at large uwhich is of course useful

for the numerics. Finally, in contrast to Y
ph
d1
ðu1Þ, the term

Z42
ðu1Þ is evaluated in mirror kinematics.

Numerics and its interpretation.—We solve the integral
equations (4) iteratively. As the first step of the iterations
we use the large L, ABA solutions of the Y system [15]. At
each step of iterations we also update the position of the
Bethe roots by solving the exact Bethe equation (5). It is
important to note that the right-hand side of (5) happens to
be purely imaginary within our precision.

We should also truncate the infinite set of Y functions.
We explicitly iterate the first 25 Y4n

’s and 25 Y�n
’s at each

step. For Ydn
we can truncate the sums much earlier: the

first 5 of them are large enough for our precision. Finally,
the integrals along the real axis are computed along the
stretch (�X, X) with X being a large cutoff. With these
approximations, our absolute precision for the energy is
around �0:001.

We solved the integral equations for a wide range of
couplings 0 & � & 700 � 1 stretching from the perturba-
tive region up to this value, which is already a deep strong
coupling regime [40]. We found no sign of any singularity
and the curve looks perfectly smooth. By this reason we
believe that any new singularities, such as those related to
the Lüscher � terms, were unlikely even for higher �
(though it would be easy to incorporate them into our
code). This seems to be the case perturbatively [41] and
our numerics seem to indicate that the integral form of Y
system we are solving describes exactly the full spectrum
of planar N ¼ 4 SYM theory in SLð2Þ sector.

With a precision of 0.001 we can approximate the
Konishi dimension in the range we considered by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 14

p
252:93h4þ384:74h3þ674:13h2þ128:17hþ4
35:67h4þ51:43h3þ99:71h2þ29:29hþ1

where h ¼
g2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 1

p
and � ¼ 16�2g2 (this function is just a short-

hand for a table of data).
Conclusions.—We presented here a numerical method

for solving the Y system for the Konishi dimension in
planar N ¼ 4 SYM theory. It opens the way to the system-
atic study of the spectrum of many interesting states at any
values of the coupling. We also hope to simplify the Y
system in the future using the underlying Hirota integrable
dynamics and reducing it to a finite system of integral
equations.
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Appendix.—We use: P ðnÞðvÞ � � 1
2�

d
dv logx

½þn�
v

x½�n�
v

, Kn �
2n=�

n2þ4u2
and

RðnmÞðu; vÞ � @v
2�i

log
x½þn�
u � x½�m�

v

x½�n�
u � x½þm�

v

� 1

2i
P ðmÞðvÞ;

BðnmÞðu; vÞ � @v
2�i

log
1=x½þn�

u � x½�m�
v

1=x½�n�
u � x½þm�

v

� 1

2i
P ðmÞðvÞ;

Mnm � Kn�1uRð0mÞ þ K�
n�1;m�1;

N nm � Rðn0Þ
uKm�1 þ K�

n�1;m�1;

Knm � F u
n 
F v

m 
 K2ðu� vÞ;
K�

nm � F u
n 
F v

m 
 K1ðu� vÞ;
where the fusion operation F u

n 
 A � Pn�1=2
k¼�ðn�1=2Þ Aðuþ

ikÞ. Finally, we also use a nice integral representation [16]
of the kernel T n;m given by

T n;mðu; vÞ ¼ �Kn;mðu� vÞ � in

2
P ðmÞðvÞ;

�2
X1
a¼1

Z �
Bð10Þ

n1

�
u; wþ i

a

2

�
Bð01Þ

1m

�
w� i

a

2
; v

�
þ c:c:

�
dw;

where Bð10Þ
nm ¼ F u

n 
F v
m 
Bð10Þ. For the exact Bethe

equations we should use this kernel in the mixed represen-
tation,

~T 1m¼�X1
a¼1

2Bð10Þ
ph;mir

�
u;wþ i

a

2

�

Bð0mÞ

mir;mir

�
w� i

a

2
;v

�

�X1
a¼1

2Bð10Þ
ph;mir

�
u;w� i

a

2
� i0

�

Bð0mÞ

mir;mir

�
wþ i

a

2
;v

�
�K1m:
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Finally the source term �nðuÞ ¼ F u
n 
�ðuÞ, with

�ðuÞ ¼ 1

i
log

��
x�

xþ

�
LþM

S2
BðþÞþRð�Þ�

Bð�Þ�RðþÞþ

�
(A1)

where the Beisert-Eden-Staudacher [12] dressing phase

SðuÞ ¼ Q
2
j¼1 �ðx½��; x�j Þ should be taken in the mixed,

mirror-physical representation in the integral equations
and in the physical-physical representation for�ph appear-

ing in the exact Bethe equations. We use the mirror-
physical integral representation [16]

logS ¼ log
Bð�Þþ

BðþÞþ þ
�
Bð10Þðu;wþ i0Þ 
 G


 logR
ðþÞðu� i0Þ

Rð�Þðu� i0Þ þ c:c:

�
(A2)

where GðuÞ � @u
2�i log

�ð1�iuÞ
�ð1þiuÞ while for the physical-

physical representation we can use the integral representa-
tion [42]. Finally Kph;mrðu; vÞ represents a kernel where

we use the physical (mirror) branches for u (v). For
Konishi L ¼ 2 and it has M ¼ 2 derivatives.
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