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On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at

infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at

the inner horizon. This shows not only that classical black holes are internally unstable, but also that

Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck

length. The novel feature of the divergence discussed here is that the phenomenon is present only for black

holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.
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Introduction.—Recently, Bañados, Silk, and West [1]
(BSW) suggested that rotating black holes could serve as
particle colliders with arbitrarily high center-of-mass en-
ergies, possibly offering a visible probe of Planck-scale
physics. This suggestion was soon criticized. Berti et al. [2]
pointed out that the BSW mechanism requires very fine
tuning [a degenerate (maximally spinning) black hole and
a critical angular momentum for one of the accreted par-
ticles]. Further, they pointed out that in the real world one
would obtain only modest center-of-mass energies due to
the Thorne upper limit on the angular momentum of a
black hole [3]. Moreover, they pointed out that the effects
of gravitational radiation are not ignorable. At about the
same time, Jacobson and Sotiriou [4] carefully analyzed
the fine-tuning required by the BSW mechanism, also
pointed out the consequences of the Thorne limit, and
showed how the redshift further lowers realizable energies.
It would seem that the result obtained by BSW cannot be
realized in nature, but the fact that arbitrarily high center-
of-mass energies can in principle arise remains fascinating.
However, for a maximally spinning black hole the inner
(Cauchy) horizon coincides with the event horizon. Now
since black hole Cauchy horizons have been known, for
many years, to be unstable [5], one might well suspect that
this finely tuned divergence is somehow related to Cauchy
horizon instability.

In this Letter I show that spinning black holes, approxi-
mated by the Kerr metric, do catalyze hyper-relativistic
particle collisions, not about their outer horizons, but rather
in the vicinity of their inner horizons. Moreover, I show
that this divergence is a generic feature of rotating black
holes in that the result requires no fine-tuning at all. This
instability is reminiscent of Cauchy horizon instability.
However, it is distinct. Whereas Cauchy horizon instability
remains in the limit of no rotation, the instability discussed
here does not. To catalyze hyper-relativistic particle colli-
sions inside black holes, we show that the black holes must
have angular momentum. To emphasize the importance of
the angular momentum, we motivate the four-dimensional
calculation by first considering a three-dimensional rotat-

ing black hole. We show that the instability is already
present in three dimensions.
Methodology.—For a pair of colliding particles (say 1

and 2) of (for simplicity) equal mass m, the center-of-mass
energy is given by the covariant relation [6]�

Ecm

m

�
2 ¼ 2ð1� g��u

�
ð1Þu

�
ð2ÞÞ; (1)

where u� is the unit 4-velocity of the particle. In what
follows we simply apply (1) in various backgrounds de-
scribed by the metric g�� with appropriate choices for the

velocities u�. It is certainly a surprise that this straightfor-
ward calculation appears not to have been carried out prior
to the BSW analysis.
No rotation.—In the absence of rotation we consider the

static fields

ds2 ¼ �fdt2 þ dr2

f
þ r2d�2

2; (2)

where f ¼ fðrÞ and d�2
2 is the metric of a unit two-sphere

(d�2 þ sin2�d�2). These fields include the Reissner–
Nordström–de Sitter solutions to the Einstein equations.
We consider the nondegenerate cases so the horizons occur
at simple roots f ¼ 0 (say r ¼ r0). The t independence of
(2) gives rise to a conserved energy �ð� 0Þ for test parti-
cles, and the � independence of (2) gives rise to a con-
served angular momentum l. Without loss in generality we
set � ¼ �=2. The resultant 4-velocities are given by
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From (1)–(3) after use of l’Hôpital’s rule, we find [7,8]�
Ecm

m
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2
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2ð�1 þ �2Þ2 þ ðl1�2 � �1l2Þ2

�1�2r0
2

: (4)

We conclude that without rotation, the center-of-mass
energy remains finite at nondegenerate horizons. This
regularity contrasts with Cauchy horizon instability [5].
A little rotation.—By a little rotation we mean a (2þ 1)-

dimensional rotating black hole, and not a black hole with a
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little rotation. The black hole considered here is the well-
known BTZ black hole [9]. The purpose here is to motivate
a full four-dimensional calculation. The metric can be
written in the form

ds2 ¼
�
�fþ J2

4r2

�
dt2 þ dr2

f
� Jdtd�þ r2d�2; (5)

where J represents the angular momentum and f ¼ fðrÞ,
the specific form of which does not concern us here. Again
we consider the nondegenerate cases so the horizons occur
at simple roots f ¼ 0 (say, r ¼ r0). The geodesic structure
of the BTZ black hole is known [10], and all we need to
note here is that the turning points for timelike geodesics
occur above the outer horizon and below the inner horizon.
With the same notation as above, and considering the inner
horizon, we now find a divergence of the form

�
EBTZ
cm

m

�
2

r0

� ðJl1 þ 2�1r
2
0ÞðJl2 þ 2�2r

2
0Þ

�2r40fðr0Þ
: (6)

[Note that there is no double-horizon structure in the limit
J ! 0 and so there is no J ! 0 limit for (6).] We now
explore this divergence more thoroughly in the four-
dimensional case.

Rotation.—As shown in [1,4], for a pair of particles of
mass m that fall from rest at infinity (� ¼ 1) in the equa-
torial plane, the center-of-mass energy in the Kerr metric is
given by

�
EKerr
cm

m

�
2 ¼ 2N

rðr2 � 2rþ a2Þ ; (7)

where

N ¼ 2a2ð1þ rÞ � 2aðl1 þ l2Þ � l1l2ðr� 2Þ þ 2ðr� 1Þr2

�
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q
;

(8)

the black hole is given unit mass, the angular momentum
per unit mass of the black hole is given by a, and the
particles have orbital angular momenta of l1 and l2 [11].
Here we consider black holes in the range 0< a< 1. The

horizons are given by r� � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
and here we are

concerned only with the inner horizons r�. To prove the
general divergence at r� first note that the denominator of
EKerr
cm obviously vanishes there. For the numerator we note

that N evaluates to

N� ¼ �2aðl1 þ l2Þ þ l1l2rþ þ 4r�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl21rþ þ 4ðr� � al1ÞÞðl22rþ þ 4ðr� � al2ÞÞ

q
(9)

at r ¼ r�. Whereas the detailed properties of geodesics in
the Kerr metric are involved [12], it is adequate for our
purposes here to note the following: In the Kerr metric,
timelike geodesics that fall from rest at infinity in the
equatorial plane satisfy

r3 _r2 ¼ 2r2 � l2rþ 2l2 � 4laþ 2a2 (10)

and so r3 _r2 > 0 for

� ð4a� 4lþ l2Þð4a� 4l� l2Þ � W < 0: (11)

Now W ¼ 0 at 4 values of l, given by

L1;2 ¼ 2ð1� ffiffiffiffiffiffiffiffiffiffiffiffi
1� a

p Þ; (12)

and

L3;4 ¼ �2ð1� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

p Þ: (13)

We note that L1 ! L2 ! 2 as a ! 1 and L2 ! L3 ! 0 as
a ! 0. These roots are shown in Fig. 1 along with

A ¼ 2a

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� aÞð1þ aÞp (14)

for comparison. There is a critical turning point (inflexion
in r) at r ¼ r� for l ¼ A. The fine-tuning in the BSW
mechanism is due to the fact that L1 ¼ L2 ¼ A at r ¼ r�
for a ¼ 1 as discussed at length in [4] and as shown in
Fig. 1. A sketch of W is shown in Fig. 2. Over the range
0< a< 1 particles with

L4 < l1 < L3 (15)

and

L2 < l2 < L1 (16)

have no turning points. Over the stated ranges in l1 and l2,
N� does not evaluate to zero. This is demonstrated in
Fig. 3. It is important to note that the divergence discussed
here is not due to any fine-tuning (e.g., l ¼ A lies outside
the range chosen for l2), nor is it due to any requirement of
counterstreaming [that l1 and l2 have opposite signs (they
do not need to)].

FIG. 1. The roots L along with A for comparison. The purpose
of this diagram is to show that our choice for the range L2 <
l2 <L1 excludes the fine-tuning l2 ¼ A characteristic of the
BSW mechanism.
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Discussion.—Because of the generic nature of the diver-
gence discussed above, a divergence that suffers none of
the limitations of the BSW mechanism, it is reasonable to
conclude that the use of the Kerr metric and the test point-
particle geodesic approximation has not given rise to a
fictitious result. Given this, the principal conclusion here

is that Planck-scale physics is a characteristic feature of
black hole interiors at scales much larger than the Planck
length. Further, we have found that the instability exam-
ined here is reminiscent of but quite distinct from the well-
known Poisson-Israel instability [5]. The instability of
black hole Cauchy horizons does not require nonzero
angular momentum of the black holes. The instability
discussed here does. We note that the instability discussed
here is already present in (2þ 1)-dimensional rotating
black holes. Finally, let us look at some of the simplifica-
tions used in the present argument for a four-dimensional
spinning black hole. Whereas we have considered motion
only in the equatorial plane, continuity strongly suggests
that the divergence discussed here is not restricted to
particle motion in the equatorial plane alone. We have
used the test point-particle geodesic approximation. It
would be interesting to see if the relaxation of this approxi-
mation changes the divergence.
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FIG. 2. A sketch of the function W (shown for a ¼ 0:95) with
details in the insert. The roots L are shown. The purpose of this
diagram is to show that our choice for the range L4 < l1 <L3

does not require counterstreaming, that is, l1 < 0.

FIG. 3. A plot of N�, given by (9), for a ¼ 0:95 within the
stated ranges for l1 and l2. Other plots in the range 0< a< 1 are
qualitatively similar. The purpose of this diagram is to show that
N� does not evaluate to 0 generically.
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