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We derive a general framework to identify genuinely multipartite entangled mixed quantum states in

arbitrary-dimensional systems and show in exemplary cases that the constructed criteria are stronger than

those previously known. Our criteria are simple functions of the given quantum state and detect genuine

multipartite entanglement that had not been identified so far. They are experimentally accessible without

quantum state tomography and are easily computable as no optimization or eigenvalue evaluation is

needed.
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Many-particle entanglement is a striking feature of
quantum many-body systems. Entanglement was first rec-
ognized as a curiosity of quantum mechanics because it
gives rise to seemingly nonlocal correlations of measure-
ment results of distant observers. Whereas the central role
of many-body entanglement for various applications of
quantum information processing (e.g., [1]) is undoubted,
its role in, e.g., quantum phase transitions (e.g., [2]) or
ionization processes is still debated (e.g., [3]), and ques-
tions concerning, e.g., its potential assistance to the aston-
ishing transport efficiency of biological compounds (e.g.,
[4]) are still essentially open.

To answer such questions we need reliable techniques to
characterize entanglement properties of general quantum
states. However, even the conceptually rather simple ques-
tion ‘‘Is a given quantum state entangled or not?’’ is in
general unanswered so far. It is usually addressed by means
of separability criteria, which work very well in many
cases, but are far from perfect [5]. Even more challenging
is the detection of genuine multipartite entanglement,
which has already been intensely studied (see, for example,
[6–10]), but still has not yielded satisfying results. Vast
areas of the considered state spaces are still widely unex-
plored due to the lack of suitable tools for detecting and
characterizing entanglement.

The central difficulty arises from the complicated struc-
ture of multipartite entangled states: even states that do not
separate into blocks of subsystems that are not entangled
with each other are not necessarily genuinely n-body en-
tangled. Recently, inequalities to identify genuinely
n-body entangled states have been proposed based on non-
linear functions of matrix elements [11]. Although these
new criteria are promising in the sense that they allow us to
characterize states as entangled that cannot be detected
with the standard criteria, it is also evident that the char-
acterization of entangled states will not be facilitated by a

huge set of separability criteria unless we have a systematic
way to construct and understand these criteria. Here, we
present a very general, systematic approach to construct
such criteria, and show that our newly constructed criteria
are stronger than all formerly known ones. In particular, all
these criteria apply to systems of arbitrarily many subsys-
tems of arbitrary finite dimensions.
In more detail, we derive (a) an m-linear inequality (3)

and its bilinear version Ineq. (I) to detect bipartite entan-
glement. In this Letter inequalities are identified by roman
numerals. Based on this, we derive (b) a general framework
to obtain bilinear inequalities (II) which characterize genu-
ine multipartite entanglement and (c) construct a particu-
larly strong criterion, i.e., Ineq. (III), for which the
efficiency is demonstrated in the consecutive examples.
A pure n-partite state j�i is called k separable if it can

be written as a product [5]

j�i ¼ j�1i � j�2i � � � � � j�ki; (1)

of k states j�ii each of which corresponds to a single
subsystem or a group of subsystems. If there is no such
form with at least two factors, then j�i is considered
genuinely n-partite entangled. On the level of pure states
the question of k separability can be answered in a straight-
forward fashion by means of separability criteria for bi-
partite systems, simply by considering all segmentations of
the k-partite system into two parts. However, the same
question becomes significantly more difficult to answer
for mixed states %: here, a state is considered genuinely
k-partite entangled if any decomposition into pure states

% ¼ X
i

pijc iihc ij; (2)

with probabilities pi > 0, contains at least one genuinely
k-partite entangled component. Therefore, a mixed state
can still be partially separable, even if the k subsystems
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cannot be split into two groups that are not entangled with
each other. Consider, for instance, the tripartite state

�bisep¼
X
j

pj�
j
AB��j

Cþ
X
j

qj�
j
AC��j

Bþ
X
j

rj�
j
BC��j

A:

Here the two-body states �j
AB, �j

BC, and �j
AC describe

entangled states. Even though there is no bipartite splitting
with respect to which the state � is separable, it is consid-
ered biseparable since it can be prepared through a statis-
tical mixture of bipartite entangled states.

To be certain that some state is really genuinely n-body
entangled, we thus have to make sure that there is no pure
state decomposition with only at least partially entangled
components. Since this reduces to the problem of deciding
whether each of such pure state components is at least
biseparable, let us first introduce a suitable criterion for
biseparability, which then will turn out to be the central
building block for the subsequent generalization to genuine
many-body entanglement. What we employ here, are
m-linear functions of a quantum state % on H A �H B

that can be expressed in terms of the m-fold tensor product
%�m of the density matrix % acting on the m-fold tensor
product space ðH A �H BÞ�m. As it is shown at the end of
our Letter, any separable state %s satisfies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<eðh�jð1 ��BÞy%�m

s ð�A � 1Þj�iÞ
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�j%�m

s j�i
q

;

(3)

for any positive integerm, where j�i is any fully separable
state of the m-tupled system; i.e., j�i factorizes into 2m
single-body states. �A is the cyclic permutation operator
acting on H �m

A , i.e.,

�Aj’1i�j’2i� . . .�j’mi¼ j’2i�j’3i� . . .�j’mi�j’1i;
(4)

and �B is defined analogously for subsystem B. In our
following extension to multipartite systems, we will con-
tent ourselves with the bilinear case m ¼ 2, as it is already
very powerful in detecting entanglement and Ineq. (3)
takes the rather simple form

jhilj�jkjij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hijj�jijihklj�jkli

q
� 0; (I)

which corresponds to the choice j�i ¼ jijkli. For our
following generalization of Ineq. (3) to the multipartite
case we will consider all (2n�1 � 1) different partitions
of an n-partite systems into two subsystems, because a
mixed state is biseparable exactly if there is a decomposi-
tion into pure states each of which is separable with respect
to some partition. The fictitious subsystems will be labeled
Ai and Bi (i ¼ 1; . . . ; 2n�1 � 1) in the following.
Introducing the global permutation operator � which per-
forms simultaneous permutations on all subsystems, we
can formulate now the generalization of Ineq. (3) to multi-
partite systems:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�j��2�j�i

q
�X

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�jP y

i �
�2P ij�i

q
� 0; (II)

with P i ¼ �Ai
� 1Bi

, and where the sum runs over all

inequivalent bipartitions.
To convince ourselves that Ineq. (II) is indeed satisfied

by all at least partially separable states �, let us first verify
that this holds for any pure state �� ¼ j�bsih�bsj that is
biseparable with respect some partition labeled i0. Just like
any duplicated state j�i�2 is invariant under the global
permutation �, the duplicated state j�bsi�2 is invariant
under �Ai0

� 1Bi0
. Therefore, the first term in Ineq. (II)

cancels with the i ¼ i0 term in the summation. All remain-
ing terms are expectation values of positive operators, and
given the negative sign in front of the sum, the left-hand-
side is indeed nonpositive. Hence, Ineq. (II) is satisfied for
any pure state that is not genuinely multipartite entangled.
The generalization of Ineq. (II) to mixed states is a direct

consequence of its convexity which we can see in the
following, where we will use that the state j�i is com-
pletely separable. That is, independently of which decom-
position of the Hilbert space into two subspaces we take,
we can always write it as a direct product of two states j�1i
and j�2i of the respective subspaces. The first term in
Ineq. (II) is the absolute value of the matrix element
h�1j�j�2i:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�j��2�j�i

q
¼ jh�1j�j�2ij; (5)

since � simply permutes j�1i and j�2i, i.e. �j�1i �
j�2i ¼ j�2i � j�1i. And the absolute value is convex,
i.e., jaþ bj � jaj þ jbj for arbitrary complex numbers a

and b. Each summand Ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�jP y

i �
�2P ij�i

q
in the

second term of Ineq. (II) is the square root of a product
of two diagonal density matrix elements, i.e., non-negative
numbers

K i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ~�1j�j ~�1ih ~�2j�j ~�2i

q
; (6)

with j ~�1i � j ~�2i ¼ �Ai
� 1Bi j�i. Now, Cauchy-Schwarz

inequality
P

jpjqj �
ffiffiffiffiffiffiffiffiffiffiffiffiP

jp
2
j

q ffiffiffiffiffiffiffiffiffiffiffiP
jq

2
j

q
with pj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h ~�1j�jj ~�1i
q

and qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ~�2j�jj ~�2i

q
yields

K i �
X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ~�1j�jj ~�1ih ~�2j�jj ~�2i

q
; (7)

for any set of positive operators �j satisfying � ¼ P
j�j.

Therefore, Eq. (6) is a concave quantity, so that Ineq. (II) is
indeed convex. Since, as shown above, it is satisfied for all
biseparable pure states, this implies the same also for
mixed states.
Inequalities (I) and (II) are valid for any choice of a

completely separable pure state vector j�i, but the poten-
tial to detect the genuine multipartite character of a given
entangled state will depend on a suitable choice of j�i. For
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a state with rather weak genuine multipartite entanglement
an optimization, i.e., a search for the product-vector j�i
that maximizes the violation of the respective inequality
might be necessary. Optimizations that are quite common
in the theory of entangled states, and generally pose a
difficult problem. But, finding an optimal state vector is
significantly easier than, e.g., convex roof construction
[12], or optimization of entanglement witnesses [13] since
there are no constraints to be satisfied and efficient algo-
rithms are available [14]. However, what is even more
important, the optimization space grows only linearly
with the number of subsystems as opposed to the typically
exponential scaling of such problems. Besides such an
optimization, one can combine different choices of states
j�i to tailor criteria that are suited particularly well for a
specific class of states, as we demonstrate here with the
exemplary choice of j�iji ¼ jsii � jsji with jsii ¼
jx . . . xyx . . . xi in terms of two single-particle states jxi
and jyi, and jyi is chosen exactly for the ith entry of jsii.
Taking linear combinations of Ineq. (II) for these choices
we arrive at

X
i�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�ijj��2�j�iji

q

� ðn� 2ÞX
ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�ijjP y

i �
�2P ij�iji

q
� 0; (III)

where P i ¼ �Ai
� 1Bi

is defined analogously to the

above. However, in contrast to the above, not all biparti-
tions are taken into account, but Ai is the duplicated Hilbert
space of the ith subsystem and Bi the rest. Exactly as in
Ineq. (II) also the left-hand side in Ineq. (III) is convex, so
that the inequality is proven for biseparable mixed states,
since it is proven for biseparable pure states in the end of
the Letter.

In particular with growing system size, the ability to
assess separability criteria efficiently is getting more and
more important since quantum state tomography (QST)
scales so unfavorably with the number of subsystems.
Being bilinear expectation values, the present criteria can
very efficiently be measured experimentally on identically
prepared quantum states as it has been done in [15]. But
also with measurements performed on individually pre-
pared quantum states the present criteria can be experi-
mentally assessed with significantly fewer observables
than required for QST: Eq. (II) is given in terms the square
root of the number of observables needed for QST and
Eq. (III) scales as 2nðn� 1Þ, i.e., polynomially with the
number n of subsystems.

An indispensable prerequisite for any practical criterion
is its robustness against experimental imperfections.
Therefore, let us discuss the capacity of our present criteria
on a few exemplary quantum states, where we test this
robustness.

Example 1.—First consider the three qubit state �¼
1����

8 1þ��GHZþ��W , where �GHZ¼ 1
2ðj000iþ

j111iÞðh000jþh111jÞ and �W ¼ 1
3 ðj001i þ j010i þ

j100iÞðh001j þ h010j þ h100jÞ. It is a mixture of the GHZ
state and the W state, dampened by isotropic noise (see
Ref. [16] for further details). In Fig. 1(a) the detection
parameter spaces of the inequalities (I), (II), and (III) are
illustrated. In the case of genuine multipartite entangle-
ment detection for qubits, these criteria work as well as the
best known method so far. For example, in Ref. [17] the
above state for (� ¼ 0 and � ¼ 1� p) was found to be
genuinely multipartite entangled by means of entangle-
ment witnesses up to a threshold of p < 8=19. This bound
was then improved to p < 8=17 [18], which is also our
result. In fact, for this special case our criteria coincide. For
qudits, our criteria are the first detection criteria known so
far.
Example 2.—Consider the three qutrit state � ¼

1����
27 1þ ��bisep þ ��gGHZ, where �gGHZ¼ 1

3ðj000i þ
j111iþj222iÞðh000jþh111jþh222jÞ and �bisep ¼
1
2 ðj0ih0j � ðj00i þ j11i þ j22iÞðh00j þ h11j þ h22jÞ. It is a
mixture between a generalized GHZ-state for qutrits and a
biseparable qutrit state dampened by isotropic noise. In
Fig. 1(b) the detection parameter spaces of the violation of
the inequalities (I) and (II) are illustrated.
Example 3.—Now consider the following four qudit

state:

�S ¼ 1� �� �

d4
1þ �

d

X
i

�i
gGHZ1 þ

�

d

X
i

�i
gGHZ2; (8)

where �i
gGHZx

:¼ jgGHZxðiÞihgGHZxðiÞj with

jgGHZxðiÞi :¼ P
k

1ffiffi
d

p jkijk � xijk � iijk � i � xi. Where

� is the addition modulo d. For d ¼ 2 and � ¼ � this is
the bound entangled Smolin state (see Ref. [19]) dampened

(a) 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

α

β

(b) 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

β

α

ρbisep

ρbisep

FIG. 1 (color online). Here the detection quality of the bilinear
inequalities (I), (II), and (III) is shown for the state � ¼
1����

8 1þ ��GHZ þ ��W (a) and the tripartite qutrit state

(with subsystems labeled ABC) � ¼ 1����
27 1þ ��bisep þ

��gGHZ (b). Area II contains genuine multipartite entanglement

detected by (II). Area III contains genuine multipartite entangle-
ment detected by (III). Area I (a) is not biseparable with respect
to any bipartition, since it violates inequality (I) for all partitions,
area I: BjAC is not biseparable with respect to BjAC, since it
violates inequality (I) for this partition (the result for ABjC is
equivalent). Area I:AjBC contains states that violate inequality
(I) for bipartition AjBC. The area labeled PPT constitutes all
states not detected by the Peres-Horodecki criterion [5].
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by isotropic noise. Also in this case our criteria work well.
Ineq. (3) shows that all states in the region 1� ðd2 þ
1Þ�� �< 0 and 1� �� ðd2 þ 1Þ�< 0 are not sepa-
rable with respect to any bipartition. Moreover Ineq. (II)
shows that the state only becomes biseparable outside the
region not detected by Ineq. (3) for � ¼ �> 1=ðd2 þ 2Þ,
i.e., all entangled states in this region except for the line
� ¼ � are definitely multipartite entangled. That is, our
criteria detect all states that are detected by the Peres-
Horodecki criterion [5], but,—exceeding the scope of the
latter—characterize states to be genuinely multipartite
entangled.

Example 4.—Consider the generalized GHZ state
jc dni ¼ 1ffiffi

d
p P

d�1
i¼0 jii�n with additional isotropic (white)

noise:

� ¼ pjc dnihc dnj þ ð1� pÞ 1
dn

1: (9)

With inequality (II) we can show analytically that these
states are genuinely multipartite entangled for p > 3

dn�1þ3
,

which shows that even in high-dimensional systems with
many constituents these criteria work very well.

In conclusion, Ineq. (III) is only one specific of many
possible criteria derived from Ineq. (II) and the versatility
of our approach allows us to tailor many criteria suited for
specific classes of entangled states. Given the efficient
decomposition in physical observables, our criteria enable
verification of mixed state entanglement with tools [20,21]
originally only applicable to pure states.

Appendix.—Finally, let us prove Ineqs. (3) and (III). For
the former, we have to show

h�j%�m
s j�i � 1

2ðh�jP y
A%

�m
s P Bj�i þ h�jP y

B%
�m
s P Aj�iÞ

for any separable mixed state %s ¼ P
ij’iih’ij � j�iih�ij

and any completely separable state vector j�i ¼N
m
i¼1 j�ii �

N
m
i¼1 j�ii. This amounts to showing

~X � ~X � 1
2ð�A

~XÞ�ð�B
~XÞ � 1

2ð�B
~XÞ�ð�A

~XÞ � 0; (10)

with ½ ~X�p1...pmq1...qn ¼
Q

m
i¼1h�ij’pi

iQm
i¼1h�ij�qii,

½�A
~X�p1...pmq1...qn ¼ Q

m
i¼1h�ij’piþ1modm

i Q
m
i¼1h�ij�qii,

½�B
~X�p1...pmq1...qn ¼ Q

m
i¼1h�ij’pi

i Q
m
i¼1h�ij�qiþ1modm

i.
Since ð�A=B

~XÞ�ð�A=B
~XÞ ¼ ~X� ~X, Ineq. (10) simplifies to

1
2 j�A

~X ��B
~Xj2 � 0, which proves Ineq. (3). Similar to

the proof presented in Ref. [18] we only have to verify that
Ineq. (III) is satisfied for pure biseparable states j�i due to
its convexity [as shown for Ineq. (II)]. With the short

hand notation xij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�ijj��2

� �j�iji
q

and yij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�ijjP y

i �
�2
� P ij�iji

q
, Ineq. (III) reads

P
i�jxij � ðn�

2ÞPijyij. We will have to distinguish between the cases

in which both indices i and j correspond to different, or the
same parts A and B in the bipartition with respect to which
j�i (without loss of generality we assume i to correspond

to A). The former contributions to Ineq. (III) we denote
as Bd ¼

P
i;j2Bðxij � ðn� 2ÞyijÞ, the latter as Bs¼P

i�j2Aðxij�ðn�2ÞyijÞ�ðn�2ÞPiyii, so that Ineq. (III)

reads Bs þ Bd � 0. Bd is nonpositive since xij � yij as

shown for Ineq. (II). Since the yij are non-negative, we

obtain Bs �
P

i�j2sxij � ðn� 2ÞPiyii ¼
P

i�j2sðxij �
ziyiiÞ � P

i�j2sðxij � yiiÞ with zi ¼ ðn� 2Þ=ðni � 1Þ,
where ni is the number of subsystems in A, where zi � 1
since A can comprise at maximum n� 1 subsystems. Now,
we can symmetrize the last term in

P
i�j2sðxij � yiiÞ, i.e.,

rewrite it as
P

i�j2sðxij � 1=2ðyii þ yjjÞÞ. Since yii ¼
hsij%�jsii [due to the relation P ij�iii ¼ j�iii), we can
conclude xij ¼ jhsij%�jsiij � 1=2ðyii þ yjjÞ], such that

Bs is non-negative, what finishes the proof of Ineq. (III).
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