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The motion in concentrated polymer systems is described by either the Rouse or the reptation model,
which both assume that the relaxation of each polymer chain is independent of the surrounding chains.
This, however, is in contradiction with several experiments. In this Letter, we propose a universal
description of orientation coupling in polymer melts in terms of the time-dependent coupling parameter
k(). We use molecular dynamics simulations to show that the coupling parameter increases with time,
reaching about 50% at long times, independently of the chain length or blend composition. This leads to
predictions of component dynamics in mixtures of different molecular weights from the knowledge of
monodisperse dynamics for unentangled melts. Finally, we demonstrate that entanglements do not play a

significant role in the observed coupling.
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Slow relaxation in polymer melts has attracted the con-
stant attention of theoreticians for the last 40 years, perhaps
partly because it is still lacking a general framework de-
scription. Indeed, melts of short chains are called unen-
tangled and described by the Rouse theory [1]. Relaxation
in melts of longer chains is believed to be dominated by
entanglements, and is consequently described by the tube
theory [2]. However, both theories rely on a very simplistic
assumption, namely, that all chains move independently
from each other; i.e., the effect of all other chains on a
probe chain can be described by random delta-correlated
forces and by the static tube constraints for longer chains.
The reasoning behind such an assumption is based on the
Flory theorem, which states that excluded volume interac-
tion in polymer melts are screened. This makes the chains
obey Gaussian random walk statistics on large scales,
making single chain dynamics Rouse-like at large scales.
However, the fact that each individual chain obeys Rouse
dynamics does not mean that the total stress relaxation is
also known: this will only be true if cross-correlation
between the chains is negligible, which as we show below
is clearly not the case.

The tube theory uses an assumption of chain indepen-
dence twice: each chain reptates in its tube independently,
and the piece of chain, which escaped from the tube, is
assumed to adopt a random orientation independent of the
surrounding chains. Merrill et al. [3] demonstrated a long-
time ago that if the second assumption is violated, the
relaxation will be slower than expected from the tube
theory. Thus, the validity of both Rouse and the tube theory
clearly depends on the coupling and cross-correlations
between orientation relaxation of different chains in the
melt, which we observe and discuss in this letter.

Experimentally, orientation coupling was investigated
by a combination of dielectric dichroism and birefringence
by Ylitalo et al. [4], and by NMR by Graf et al. [5]. In the
first group of experiments, one of the components in binary
mixture was labeled and its orientation relaxation was
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measured after step-strain experiment. The labeling was
achieved by replacing a portion of the hydrogens on the
polymer backbone with deuterium and then performing the
measurements at the infrared wavelength of the carbon-
deuterium vibrational absorption. It was shown that short
component orientation is not fully relaxed until the longest
relaxation time of the long component, and that the relaxa-
tion of short component becomes proportional to the total
relaxation after the expected reptation time of the short
component: Sshort(t)/sshort(o) = 8St0tal(t)/Stota1(0)» where
S(7) is the orientation relaxation function. The coupling
parameter & defined through this relationship was found to
be € = 0.45 = 0.05. It was also shown that in order to
describe the relaxation with the tube theory, the coupling
effects must be taken into account. However, such coupling
coefficient can only be measured after relaxation of short
component. Also, this definition is not applicable to mono-
disperse melts. In 'H Double quantum NMR experiments
Graf et al. measured the chain dynamics of a polybutadiene
melt well above the glass transition and confirmed signifi-
cant residual bond orientation after elementary entangle-
ment time 7,. They concluded that restrictions by
entanglements can not be the only source of orientation
coupling. A possible reason for this strongly anisotropic
orientational dynamics may be the intermolecular orienta-
tional correlations. Our molecular dynamics simulation
support this conclusion.

Orientation coupling effects were also investigated in
molecular dynamics simulations by Baljon er al. [6],
whose protocol was similar to the experimental one.
They simulated one very long chain (N = 5000) in the
sea of small chains after step deformation and looked at the
order parameter ¢*# = (3/2)!/2(u®u” — 1§%), where u
is the unit bond vector and 5% is a unit tensor. Similarly to
the experiment of Ylitalo et al. [4], they found that the
short chains order parameter does not relax to zero after the
relaxation time of short chains, but instead becomes pro-
portional to the order parameter of the long chain, with the
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somewhat smaller proportionality coefficient & = 0.28.

Baljon et al. also attempted to calculate & from the static 105 LN o 00(50%)
properties of the melt, namely, from the orientation distri- o N=10

bution function around each bond. The long chain bonds
were oriented by using an explicit nematic field instead of
stretching. However, the smaller coefficient & = (.18 was
found. They argued that the difference can be explained by
positional anisotropy of chain bonds belonging to other
chains. By following the same procedure, we were able to
reproduce similar results. Thus, a more universal measure
of coupling is desirable.

The aim of the present Letter is to investigate coupling
effects as a function of time by using equilibrium molecu-
lar dynamics simulations, and to develop a universal de-
scription of coupling without relying on binary blends or
nonequilibrium experiments. We will use a popular
Kremer-Grest polymer model [7,8], consisting of purely
repulsive Lennard-Jones beads connected by FENE
springs (the same model was used by Baljon et al.).
Introduction of multiple-tau correlators for each chain
allowed very precise calculation of various correlation
functions, using all available data at each time step. The
details of the simulations are described elsewhere [9]. Most
of the simulations were running in the system with mono-
mer number density equal to 0.850~3 where o is the
Lennard-Jones length unit. The main tool we will be using
are cross-correlation functions between different chains’
orientation tensor. The orientation tensor of chain j is
defined as 0;7‘3(1,‘) =3yt ulffj(t)uiﬂj(t), where N is the
number of monomers in chain j, u;; is a bond vector
connecting monomers i and 7 + 1 of chain j,  and 8 go
through Cartesian coordinates x, y, z. Since the bond
lengths are very quickly equilibrated in our simulations,
it does not matter whether u;; is normalized by its length or
not. We adopted an unnormalized definition for computa-
tional convenience and easier analysis with Rouse modes
in the future. Using this definition we can compute a
variety of autocorrelation and cross-correlation functions
in the melt. But before doing this, let us check if the stress-
optical law works in our equilibrium simulations. The
stress-optical law states that the relaxation function of total
orientation tensor should be proportional to the total stress
relaxation function:
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where S,.(?) is total orientation relaxation function, G(¢) is
the usual stress relaxation function (o®# being the stress
tensor), N, and N, = N.(N — 1) are the number of chains
and bonds in the system and « is the stress-optical
coefficient.

Figure 1 shows stress relaxation functions of two mono-
disperse melts and of their 50% blend, together with ori-
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FIG. 1 (color online). Stress (lines) and orientation (open
symbols) relaxation functions in monodisperse melts and their
binary blends. The reason of the oscillations of stress relaxation
at short times is bond length relaxation.

entation relaxation, multiplied by 1/a. We found that
a = 0.0885 for the flexible Kremer-Grest model. Three
important observations are (i) indeed the two relaxation
functions become proportional to each other after about 30
Lennard-Jones time units, and remain proportional to each
other with accuracy better than 1%; (ii) The stress-optical
coefficient does not depend on chain lengths, and (iii) it
remains the same for binary blends, in accordance with
experiment. Thus, studying orientation coupling should
provide useful information for the stress relaxation and
rheology. Although the explicit effects of nonbonded in-
teractions on the stress seem to be limited by short times,
another important effect of nonbonded interaction, which
persists at all times, is the coupling of orientational relaxa-
tion between different chains.

In order to investigate the role of these cross-
correlations, we decompose the total orientation relaxation
into autocorrelations within the same chain and cross-
correlations, introducing the following notations:
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where N, is the total number of bonds in the system and A,
B denote different components with volume fraction ¢,
and ¢p. In these notations, total relaxation of the binary
blend can be expressed as

Siot(1) = @aAx() + @3Can(0) + @pAp(1) + @3 Cpp(1)
+ 204 05C5(1).

To study these contributions in simulations, we introduced
an orientation correlator for each chain, a correlator for
total orientation of all chains of each type, and one corre-
lator for the total orientation. The difference between the
total and sum of autocorrelations gives different cross-
correlation terms. To exclude artefacts from the simulation
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box size, we routinely calculated «(r) for different box
sizes, and all results reported in this Letter are within
3%—-4% of asymptotic values for an infinite box.

Figure 2 (top) shows S, (#) and total cross-correlation
C(r) for monodisperse melts of different lengths and for the
50% blend of N = 10 and N = 100 chains. The first thing
to notice is that cross-correlations constitute a significant
fraction of the total orientation relaxation (50% at long
times). All cross-correlations start at the same point at t =
0 and are constant until # = 0.57, and then increase a little
(15%) before starting to relax with a slope of approxi-
mately —0.5, similar to the autocorrelations. Since A(7) is
decreasing faster at small times, the relative role of cross-
correlations is increasing with time. Figure 2 (bottom)
shows all 5 contributions to the total orientation relaxation
in binary blends. In particular, the cross-correlation be-
tween short and long chains Cy;(¢) does not decay until the
relaxation time of the long chains. Instead, it becomes
proportional to the total orientation relaxation function.
We note that in order to predict short chain relaxation after
a small step deformation using the fluctuation-dissipation
theorem, one must add the short chain autocorrelation
function and all cross-correlations involving the short
chains  [10], ie., E (t) = @,A(t) + ¢2C(1) +
@,¢;Cy(1). This means that although short chain A,(z)
and C,(r) relax with the short chain relaxation time,
orientation of the short chains after the step deformation
will not relax until the longest relaxation time of the system
because of nonzero Cy;(7). This qualitatively matches the
experimental observations of Ylitalo et al. [4].

The main goal of this Letter is to describe orientational
coupling with one universal function, which will capture
the behavior of both monodisperse polymers and their
mixtures. In particular, it should allow prediction of all
cross-correlation curves on Fig. 2 (bottom) from monodis-
perse behavior [Fig. 2 (top)]. We find these requirements
are met by the function we call a time-dependent coupling
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FIG. 2 (color online). Top: Total (lines) and cross-correlations
(open symbol) relaxation functions (multiplied by 2). Bottom:
Separate contributions (lines) in binary blends. Points show
predictions of cross-correlation terms from monodisperse simu-
lations only using Egs. (1).

parameter, k(t) = S[CEZ) = W, where C(f) and A(r)

are the sums of all cross- and all autocorrelations in the
system, respectively. Clearly (z) has a simple physical
interpretation of relative importance of cross-correlations
at different times.

Figures 3(a) and 3(b) demonstrate that «(z) has indeed a
universal behavior, which is independent on molecular
weight and blends composition. Indeed, all plots collapse
onto the same master curve for several bidisperse melts (a)
and for different chain lengths [(b) lines]. These two graphs
also illustrate that the role of cross-correlations increases
with time, rising from 12.9% at t = 0 to about 50% at a
later time. In order to find out whether entanglements play
an important role in observed coupling, we simulated a
system with softer nonbonded potentials U,;,(r) =
—3uy(r* = r2,)* r = r,;, and used harmonic bonded po-
tential Uy (r) = % (r — r,)%; r =< 1y, where r,, = 1.6, 1, =
1.222, uy = 2.2, k, = 20 when k;, = 0. This system has
approximately the same structural properties of the chains
at long distances (i.e., it has exactly the same average
squared internal distances (R?j) and thus the same Cy),
but allows easy chain crossing. We found that «(z) reached
the same plateau (around 50%) as the original system
[points in Fig. 3(b)]. The only difference is that the termi-
nal relaxation time is smaller than the previous one since
the chains obeyed Rouse-like dynamics. Indeed we ob-
served that orientation relaxation and mean-squared dis-
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FIG. 3 (color online). Universal coupling parameter () in
binary blends with varying composition (a) and in monodisperse
melts with varying molecular weights (b).
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placements were in perfect agreement with the Rouse
model. The results of original entangled and soft potential
simulations show that the role of entanglements in orienta-
tional coupling is negligible in this particular system, con-
trary to the recent argument of Deutsch and Pixley [11].

To further probe the role of entanglements we computed
k(1) for slightly semiflexible chains with stiffness parame-
ter k;, = 3 as described in Ref. [9]. These systems have
significantly smaller N, and thus more entanglements. The
results are shown in Fig. 3(c) by lines. In this case the
coupling at time zero is higher since semiflexible chains
have more contacts with other chains than their fully
flexible counterpart. At later times k(f) increases above
60%. This is again compared with softer system with
parameters u, = 2.1, k., = 34 adjusted to match internal
distances <R%j>. The results are again very close, although
some difference shows up at late time. Coupling parameter
for soft systems seem to reach a plateau, whereas it con-
tinues to increase slowly for the Lennard-Jones chains.
This can be interpreted as an influence of entanglements.
Alternatively, one can say that in entangled system chains
spend more time in contact with the same other chains, and
thus become more coupled to each other. In any case, the
role of entanglements seem to be minor and indirect.

The universality of time-dependent coupling parameter
k(r) has nontrivial consequences for polymer blends.
Indeed, a requirement that «(7) is the same in monodisperse
melts and in their blend can be written as

_ As(t)% + AI(I)QDI _ AEHOHO(Z) _ A;nono(t)

blend
S tot

1 — k(1)

SSmOHO SIZTIOHO

It immediately follows from here that if autocorrelation
functions are the same in the mixtures as in the monodis-
perse systems (which is true for unentangled systems), the
simple mixing rule for the total orientation relaxation
Sior(t) = @ STO(1) + @, 57" (¢) is not spoiled by the ori-
entation coupling. In entangled systems, single chain mod-
els like tube or slip-links aim to predict autocorrelation
relaxation in blends. Observed orientation relaxation of
short chains will be affected by the long chains via ori-
entation coupling and tube or slip-links predictions must be
modified accordingly. Universality of () also means that
one can relate different components of cross-correlation to
the autocorrelation functions:

2C, (1) = (89 (1) + ST (1)) k(1)
C,, (1) = Smom(1) k(r); Cy(t) = SO (1) k(z).

Predictions given by these expressions are shown by open
symbols in Fig. 2 (bottom). They are in perfect agreement
with the lines (measured in binary blends) apart from the
long-time behavior of C(r), which is affected by the
secondary coupling of two short chains via an intermediate
long chain. These in turn provide the response of the short
component to the step deformation:

@0,k (t)
s (

with analogous expression for the long component. For
the times longer than the relaxation time of the short
component 7, this equation provides a simple relation
of our coupling parameter with the Doi’s parameter:
g = %K(l > 7).

In conclusion, cross-correlations between orientation
tensors of different chains in polymer melt reveal rich
and fascinating picture. Molecular dynamics simulations
show that the role of cross-correlations in total orienta-
tional relaxation function increases with time, reaching the
same amplitude as the autocorrelations. We introduced a
time-dependent coupling parameter «(¢) and found that it
provides a universal description of coupling effects inde-
pendent on chain length and blend composition. Instead of
using static Doi’s coupling parameter &, which is valid only
after short chain relaxation in binary blends, we can use
k(#) to quantify coupling effects at any times in both
monodisperse and bidisperse melts. Universality of «(7)
means that we can predict any correlation function in
binary blends for unentangled chains providing one knows
relaxation functions in monodisperse melts and «(z) (also
measured from monodisperse melts).

One of the main conclusions of this paper is that the
orientation coupling is time dependent, with the relative
role of cross-correlations increasing by a factor of about 4
towards longer times. This means that any static calcula-
tions will only be able to provide a small value «(0),
whereas the important longtime coupling can be only
obtained by dynamics calculations. This probably explains
the discrepancy observed by Baljon et al. [6].

E(1) = ¢,S7(0) + SPome(r) — Sene(0)
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