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A new minimal model is constructed for the doped manganese oxides which exhibit colossal

magnetoresistance, involving a broad spin-majority conduction band as well as nearly localized spin-

minority electron states. A simple mean-field analysis yields a temperature-dependent hybridized band

structure with suppressed carrier weight at the Fermi level. Spin stiffness is complex, indicating strong

spin-wave damping. Further investigations are needed to verify the relevance of the proposed model.
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The unusual properties of doped manganese oxides ex-
hibiting colossal magnetoresistance (CMR) [1] are not yet
understood theoretically, and the problem of formulating a
suitable microscopic model remains open. These proper-
ties include the CMR phenomenon and metal-insulator
transition, which are, in turn, intimately related to the
temperature-induced variation of the electron density of
states (‘‘pseudogap’’ [2]) or of the effective carrier number
[3]. This implies that, alongside double-exchange ferro-
magnetism, the effects of electron-electron interaction play
a key role and, quite possibly, are responsible for CMR
itself. Indeed, the band structure calculations [4] suggest
that the on-site Hubbard repulsion U is the largest energy
in the problem. Its effects are typically considered within
the one- or two-orbital model whereby the strongly corre-
lated behavior is induced by an interaction between the two
spin-majority electronic eg states on-site, or between the

two spin components of a single eg band [5].

It should be noted that the experimental data [6] indicate
the presence of spin-minority electrons near the Fermi level
even in the low-temperature ferromagnetic state. This
agrees with the band structure calculations [4,7], suggest-
ing that a narrow spin-minority band lies close to the Fermi
energy. Since both the localized t2g and itinerant eg states

originate from the same d shell of a Mn ion,
and therefore are characterized by approximately the
same value of Hund’s rule splitting JH, it is clear [see
Fig. 1(a)] that these spin-minority electrons populate the
spin-down t2g (localized) states [4]. This is further corro-

borated by the studies of La1�xCexMnO3 (with 1þ x
conduction electrons per formula unit) [8], which show
both the spin-minority character of the carriers and a large
overall increase in the resistivity (in comparison with the
usual 1� x electron case, e.g., La1�xCaxMnO3), consis-
tent with the extra x electrons going into the spin-down t2g
states. Yet, while ‘‘two-fluid’’ models involving itinerant
and localized states were suggested earlier by both exper-
imentalists and theorists [9–11], the appealing possibility
(mentioned in Ref. [12]) of these states having antialigned
spins has not been addressed theoretically.

Furthermore, we note that electronic properties of a
model where the orbital degree of freedom is taken into

account are strongly coupled to lattice dynamics via the
Jahn-Teller effect [1], which results in additional splitting
of both eg and t2g levels. However, CMR occurs in a broad

class of bulk systems [three-dimensional (3D) perovskites
and quasi-two-dimensional (quasi-2D) bilayered] and thin
films of varying composition, and is presumably always
due to the same physical mechanism. It is therefore worth-
while to consider a model with fewer orbitals, which still
captures some of the important intra-atomic physics of a
Mn ion, before pursuing more complicated (and probably
more material-specific) options [13].
In the present Letter, we introduce such a simplified

description and proceed with a simple mean-field analysis.
While finer theoretical tools are required to gain
a fuller picture, qualitatively our results for electron dis-
persion and magnetic properties appear very encouraging.

We consider a model involving a large spin ~S and two
conduction-electron orbitals (broadened and nearly local-
ized) at each Mn site [cf. Figure 1(b)]:
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FIG. 1. (a) Crystal field splits the d-electron states of a Mn ion
into t2g (solid lines) and eg (dashed lines); these split further due

to a lattice distortion. Spin degeneracy is broken due to Hund’s
rule, and the ‘‘spin-plus’’ t2g electrons form the local spin 3=2.

Chemical potential (dotted line) lies within an eg band, with a

‘‘spin-minus’’ t2g level nearby. (b) A simplified model of Eq. (1),

with the spin quantization axis fixed by a local spin S.
(c) Relevant orbitals in the limit JH ! 1 (see text); adding an
itinerant (localized) electron increases (reduces) the total on-site
spin of Sþ 1=2 by 1=2.
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Here, the operators ci� (di�) annihilate an eg (t2g) con-

duction electron of spin � ¼" , # (in the laboratory frame)
at a site i of a square (or simple cubic) lattice. Localized
spins Si originate from the remaining two t2g electrons;

hence, in reality S ¼ 1. They interact via superexchange J
and are also coupled to the spins of conduction electrons

on-site, ~�i ¼ 1
2

P
�;� ~���ðcyi�ci� þ dyi�di�Þ (where ~��� are

the Pauli matrices) via a strong ferromagnetic Hund’s rule
exchange JH; the external magnetic field H is applied
along the z axis. Owing to the fact that the (electron)
coordinate operator is not diagonal in the band index, there

is a hybridization V between the t2g and eg states; Eð0Þ
d is

the (bare) energy of the t2g electrons. Direct hopping

between t2g states on different sites is assumed to be

negligible, while the nearest-neighbor hopping t between
the eg states will be used as an energy unit, t ¼ 1.

We construct the spin-wave expansion for the model (1),
keeping terms up to first order in 1=S. In the spirit of
Ref. [14], it is expedient to introduce a new basis of
electron states on each site according to
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(expressions for d" and d# are obtained by substituting

g� $ f�). Operators gi" and fi" (gi# and fi#) correspond,
respectively, to the eg and t2g electrons with a spin parallel

(antiparallel) to the total spin on-site, ~T i ¼ ~Si þ ~�i,
whose vibrations are annihilated by a Holstein-Primakoff
magnon operator �i. The Hund’s rule term takes form
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Finally, the Holstein-Primakoff operators ai of the origi-

nal spins ~Si are expressed as

a � �� gy" g# þ fy" f#ffiffiffiffiffiffi
2S

p � gy" g" þ fy" f" � gy# g# � fy# f#
4S

�:

We next substitute these expressions into the
Hamiltonian (1) and take the limit of JH ! 1 while keep-

ing Ed ¼ Eð0Þ
d þ JH constant. Now, if the chemical poten-

tial, denoted �þU� JH=2, lies within the spin-up eg
band, then the spin-down eg band is completely empty,

and the spin-up t2g band completely filled. This is precisely

the case of interest to us, containing the effects of the
Coulomb repulsion between the spin-up eg and spin-

down t2g electrons in the presence of a localized spin Sþ
1=2 [Fig. 1(c)]. Henceforth, we drop all the terms contain-
ing the operators g# and f", and suppress the spin index of

remaining fermion operators.
Assuming the ferromagnetic ground state, the

Hamiltonian takes the form H e þH h þH m with the
electronic and (magnon-assisted) hybridization terms,

H e ¼
X
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Here, N is the number of lattice sites, � ~k ¼ � coskx �
coskyð� coskzÞ is the tight-binding dispersion law in two

(three) dimensions, and ~Rj is the radius vector of site j. It is

assumed that the site basis is more appropriate for describ-
ing the narrow-band fermions fj, easily localized by fluc-

tuations or disorder. The term H m, which is of order 1=S,
contains Zeeman electron energy shifts, magnon dynam-
ics, and double-exchange band-narrowing effects:
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Here, momentum-conserving summation is denoted by �0,
and d is the dimensionality of the system (2 or 3).
The electronic term, H e, is the familiar Falikov-

Kimball model. The rich physics contained therein [15]
crucially depends on the presence (and nature) of the
interband hybridization. The form of our H h, Eq. (3), is
dictated by spin conservation: electron transfer between
the two opposite-spin bands must be accompanied by

magnon creation or annihilation, �y
~q or �~q. Such transfers

require misalignment of spins ~Si on neighboring sites;
hence, the hybridization matrix element vanishes at q !
0, underlining the importance of short-wavelength pro-
cesses. The latter feature appears promising in the context
of CMR compounds, where the unusual short-range corre-
lations are reflected in the electronic and magnetic [16,17]
properties. Importantly, magnetic field H affects the car-
riers both via double-exchange mechanism and by chang-
ing the energy difference between localized and itinerant
states [see Eq. (4)].
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We shall be interested in the regime characterized by
nonzero values of both fermion occupancies ng and nf (the

latter assumed independent on ~Ri),

nf ¼ hfyi fii; ng ¼ 1

N

X
~k

ng~k
; ng~k

¼ hgy~k g ~ki: (5)

In addition, there also arises an off-diagonal average,

hfyj g ~k�~qi � hfyg ~k�~qie�ið ~kþ ~qÞ ~Rj (6)

(here and below, we omit the site indexes of operators fj
once the j-dependent exponent has been factored out).

In order to clarify the basic physics contained in our
model, Eqs. (2)–(4), we will now proceed with a mean-
field analysis of it. Here, we focus on the simplest self-
consistent scheme, allowing only for average values (5)
and (6) and for a nonzero magnon occupancy. While actual
validity of this approach is probably restricted to the inter-
mediate temperature range (on the scale of the Curie
temperature) and moderate values of U (see below), it
offers important guidance for future investigations.
Mean-field equations can be found in a standard way by
decoupling the equations of motion for the appropriate
retarded Green’s functions, expressing the latter as
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Here, the magnon occupancy is
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(ng~k
and nf are expressed in a similar way). Hartree ener-

gies of magnons and those of eg and t2g electrons read
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The last terms in Eqs. (12) and (13) contain the double-
exchange physics (ferromagnetic contribution to the spin-
wave spectrum and the conduction band narrowing).

In analyzing Eqs. (7)–(10) we consider a 2D system; the
3D case can be expected to be similar. We replace all
factors ð�k � �k�qÞ2 with their average values over the

isoenergetic surfaces [18] � ¼ � ~k and � ¼ �~q. We arrive

at a system of mean-field equations for �, nb, and four
quantities

R
�ð�Þð2þ �Þ�d�, R

N ð�Þ��d�, R
N ð�Þ�

hv2i��d�, and
R
N ð�Þð4� �2Þ�d�, where �ð�Þ and hv2i�

are the tight-binding density of states and average velocity

square at a given energy �. Solving these equations nu-
merically, we observe the following:
(i) The localized band is broadened, and a temperature-

dependent gap � (a new small energy scale) opens in the
spectrum of itinerant electrons (fermions g ~k). Quasiparticle

weight of itinerant electrons decreases when the energy
approaches the gap from either side. The Fermi level lies
below the gap, and the quasiparticle weight at the Fermi
surface is strongly suppressed [Figs. 2(a) and 2(b)]. This
behavior, which is already reminiscent of a T-dependent
(pseudo)gap found experimentally [2], will be further
modified in a more exact treatment (e.g., a finite relaxation
time will arise in the second order in 1=S). Equations (7)
and (8) imply that in the present model, these spectral
features are directly controlled by spin dynamics.
(ii) With only the spin-majority electrons contributing to

the spin stiffness D, which in 2D or 3D is given by

DS¼� 1

4dN
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g
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the latter is suppressed in comparison with the usual
double-exchange case [Fig. 2(c)]. An unusual feature of
the present model is that the spin-flip continuum extends
down to zero energy and momentum [19]. As a result, D
also develops an imaginary part. This implies strong mag-
non damping, as observed experimentally [17].
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As for the diffusive central peak found in the inelastic
neutron scattering [16], we expect it to arise once the
magnon-assisted diffusive motion of t2g electrons (ne-

glected here) is taken into account. Experimentally,
strongly damped magnons, central peak, and pseudogap
in the density of states [2] (or optical Drude weight reduc-
tion [3]) are the key generic features of CMR manganates
at the intermediate-to-high temperatures below TC.

A relatively small value of U used in Fig. 2 is due to the
reduced stability region for mean-field solutions with both
nf and ng different from zero. This reduction is an ex-

pected artifact of a simplistic mean-field approach, mirror-
ing, e.g., the greatly enhanced mean-field stability of
ferromagnetism in the Hubbard model. This situation calls
for further theoretical investigation, combining advanced
mean-field schemes with numerical methods.

These future treatments will also have to address the
issue of ferro- to paramagnetic transition and a possibility
of charge ordering. We expect that any transition will be
accompanied by a change of electron distribution between
the two bands, thus changing the magnitude of the net spin
Ti on-site. Experimentally, the relevant quantity is the
average total spin hT i ¼ ð3þ ng � nfÞ=2 of a Mn ion,
which should show temperature and magnetic field depen-
dence, especially in the region around and above TC. In
particular, this should lead to an unconventional longitu-
dinal spin dynamics [20] and to a renormalization of the
Curie-Weiss constant (cf. Ref. [21]). In principle, the value
of hT i should also be accessible more directly via muon
spin rotation [22] and NMR [23] measurements. We sug-
gest that these methods (combined with electron spectros-
copy) should be used to measure the value of hT i. Its
temperature dependence, especially if it correlates with
(magneto)transport properties, would imply that a success-
ful theoretical description of CMR compounds should in-
deed include spin-minority localized electrons.
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FIG. 2. Mean-field results for a 2D system with Ed ¼ �0:35, V ¼ 0:2, U ¼ 1:2, and J ¼ 0. (a) Schematic view of the itinerant
fermion dispersion (solid lines); dotted lines show the unhybridized ~�k and ~Ed. (b) Temperature dependence of quasiparticle weight Z
at the Fermi level (solid line) and the gap, �ðTÞ (dashed line), for the electron density 1� x ¼ 0:7. (c) Doping dependence of real
(solid line) and imaginary (dashed) parts of spin stiffness D at T ¼ 0:0015. Dotted line shows spin stiffness for a usual double-
exchange model. t2g occupancy increases from nf ¼ 0:25 at 1� x ¼ 0:65 to nf ¼ 0:43 at 1� x ¼ 0:73.
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