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We present a study of the phase diagram of a random optimization problem in the presence of quantum

fluctuations. Our main result is the characterization of the nature of the phase transition, which we find to

be a first-order quantum phase transition. We provide evidence that the gap vanishes exponentially with

the system size at the transition. This indicates that the quantum adiabatic algorithm requires a time

growing exponentially with system size to find the ground state of this problem.
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Theoretical research on quantum computing is moti-
vated by the exciting perspective of computers that take
intrinsically advantage of the laws of quantum mechan-
ics. A lot of activity has been devoted to the development
of quantum algorithms that could achieve faster velocity
with respect to classical ones. A typical problem that is
encountered in almost all branches of science is that of
optimizing irregularly shaped cost functions: the Quantum
Adiabatic Algorithm (QAA) [1,2] is in principle able to
tackle such problems in a universal way. Suppose one
wishes to find the ground state of a Hamiltonian HP acting
on N qubits. To perform the QAA one considers a simpler
Hamiltonian HQ, such that the quantum computer can be

easily initialized in its ground state. If one slowly interpo-
lates the Hamiltonian HðtÞ of the quantum computer from
HQ to HP, the adiabatic theorem ensures that, with high

enough probability, the system will remain at all times in
the ground state of the interpolating Hamiltonian. Hence,
at the end of the evolution, it will be in the ground state of
HP and the original problem will be solved. The crucial
question is of course, how slow the evolution should be in
the thermodynamic limit N ! 1. Quite generally, the
adiabaticity condition requires the rate of change of HðtÞ
to be smaller than the (squared) gap between the ground
state and the first excited state of HðtÞ. Hence, the time
needed to ensure adiabaticity will diverge in the thermody-
namic limit whenever a quantum phase transition, at which
the gap is expected to vanish [3], is encountered during the
interpolation between HQ and HP. It is well established

that the gap vanishes at least polynomially in N at a
quantum second-order critical point [3] (except in some
cases in presence of disorder [4]), while it vanishes ex-
ponentially in N at a first-order phase transition [5–7].
First-order phase transitions are thus particularly danger-
ous for the QAA.

The formal computational complexity theory classifies
the difficulty of a problem according to a worst-case cri-
terion. It might, however, well be that ‘‘most’’ of the

problems in a given class are easy, even though a few
atypical instances are very difficult. To give a precise
content to this notion of typicality the research has turned
to the study of random instances, defining a probability
distribution on the space of instances. Statistical mechanics
tools have provided a very detailed and intricate picture of
the properties of the configuration space of such typical
problemHamiltoniansHP [8]. Random instances were also
used to benchmark the performance of the QAA, and early
results generated considerable excitement by reporting
polynomial scaling of the minimum gap for sizes up to
N � 100 [2,9]. However, some evidence of the presence of
first-order phase transitions has been recently reported [5–
7], which is natural from the point of view of mean-field
quantum spin glasses [10]. These studies rely on numerical
investigations of small systems (N & 256) and/or on per-
turbation theory close to HP; hence, they should be com-
pleted by a nonperturbative analytic treatment in the
thermodynamic limit.
This is what we achieve in this Letter, reporting the

results of the first analytical study of a random, quantum,
finite-connectivity optimization problem (namely, random
regular 3-XORSAT in a transverse field), that is believed to
be largely representative of the generic behavior of these
problems. We compute the complete phase diagram of the
model in the thermodynamic limit N ! 1 and for a uni-
formly random distribution of instances, as a function of
temperature and transverse field. This is possible thanks to
the quantum cavity method, recently introduced in [11] and
further developed in [12] (see [13] for related work), that
allows us to solve exactly these problems by generalizing
to the quantum case the method developed for classical
models [14]. Our main result is the occurrence of a first-
order phase transition at zero temperature as a function of
the transverse field. We corroborate the analytical results
with exact diagonalization and quantum Monte Carlo data.
We provide evidence that the gap vanishes exponentially in
the size of the system at the transition. These results
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strongly suggest that the QAA requires an exponentially
large time in N to find the ground state of this problem.

Methods.—We focus on the random c-regular 3-XORSAT
problem [15], that in spin language is defined by the
Hamiltonian

H ¼ HP þHQ ¼ XM

a¼1

ð1� Ja�
z
ia
1
�z

ia
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�z

ia
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Þ � �

XN

i¼1

�x
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Here, Ja ¼ �1with equal probability. The 3 spins ia1 , i
a
2 , i

a
3

involved in clauses a ¼ 1; � � � ;M ¼ Nc=3 are chosen uni-
formly at random among all possible choices such that
each spin enters exactly in c clauses. In the classical limit
� ¼ 0, a given instance of the system is called satisfiable
(SAT) if the ground state energy is zero, UNSATotherwise.

The thermodynamic properties of the model in the ther-
modynamic limit N ! 1, and on average over the disor-
der, can be obtained by means of the cavity method [14].
For quantum models, the cavity method allows to reduce
the solution of the model to the problem of finding the fixed
point of a functional equation for the local spin effective
actions [11,12] (this functional equation being solved nu-
merically as in [12] with a population dynamics algorithm
[14]). In the presence of one single pure state, the method
discussed in [11,12], that goes under the name of replica
symmetric (RS), is enough to obtain the correct solution.
However, in order to describe the low-temperature glassy
phase, which is characterized by a large number of pure

states, one has to introduce a generalization of the RS cav-
ity method that goes under the name of one-step replica
symmetry breaking (1RSB) [14]. This generalization, that
we introduce here for the first time in the context of quan-
tum diluted models, proceeds along the line of the classical
computation (see [15] for the solution of (1) at � ¼ 0)
using as variables the imaginary-time spin trajectories as
detailed in [12]. Additionally, for finite N, we performed
exact diagonalization (ED) using the Ritz functional
method [16], and quantum Monte Carlo (QMC) simula-
tions using the heat-bath algorithm introduced in [12].
Results of the cavity method.—In the classical limit [15]

when � ¼ 0, the model is SAT (with a probability going to
1 as N ! 1) for c < 3, UNSAT for c > 3, while in the
marginal case c ¼ 3 it is SATwith finite probability. Let us
begin the description of our results with the simpler case
c ¼ 3. The RS computation predicts, at low enough tem-
perature T & 0:24, a first-order transition between two
different paramagnetic (mz ¼ h�z

i i ¼ 0) phases: the clas-
sical paramagnet (CP) characterized by a small value of
transverse magnetization mx ¼ h�x

i i, and the quantum
paramagnet (QP) that has a larger value of mx. This tran-
sition and the corresponding spinodals are shown in the (�,
T) phase diagram of the top panel in Fig. 1; the transition is
found around �cðTÞ � 1:0 for all values of T & 0:24. We
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FIG. 1 (color online). (Top) Phase diagram of Eq. (1) for c ¼
3. Open symbols are results of the RS calculation: first-order
transition line separating the CP and QP (circles), with the
corresponding spinodals (diamonds). Full symbols are the result
of the 1RSB calculation: squares, clustering transition separating
the CP and dCP. (Bottom) Energy and mx as a function of � for
temperature T ¼ 0:05. MC data for a sample with N ¼ 2049.
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FIG. 2 (color online). (Top) Phase diagram of Eq. (1) for c ¼
4. Symbols as in Fig. 1, with the addition of the spin-glass
transition line (full triangles); the correct first-order transition
line is obtained from the 1RSB calculation (full circles).
(Bottom) Energy and mx as a function of � for temperature T ¼
0:05. MC data for N ¼ 120 and averaged over 20 samples (full
symbols) and extrapolated in 1=N to the N ! 1 limit (open
symbols). Black curve, starting from the classical ground state
found using an exact MAXSAT solver [19]. Red curve, starting
from the QP.
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also report in the bottom panel of Fig. 1 the cavity method
predictions for mx and the energy density e ¼ hHi=N at
very low temperature. The outcome of the 1RSB compu-
tation is twofold: it confirms that the RS computation of the
thermodynamic observables is in this case correct in the
whole phase diagram (�, T), in particular, they are singular
only on the RS transition line. Moreover, it unveils that, for
low enough values of T and � the CP phase is actually a
‘‘dynamical CP’’, in technical terms a 1RSB phase with
Parisi breaking parameter x equal to 1, where an exponen-
tial number of pure states coexist. The attribute dynamical,
taken from the literature on classical mean-field spin
glasses [8], emphasizes that equilibrium thermodynamic
properties are unaffected as one crosses the line between
CP and dCP (also plotted in Fig. 1).

We turn now to the c ¼ 4 case (which is representative
of the behavior for any c > 3), for which the results are
displayed in a similar fashion on Fig. 2. It has a richer
phenomenology very similar to the one of fully connected
mean-field models [10]. Indeed the dCP undergoes a ther-
modynamically second-order phase transition to a true
spin-glass (SG) phase (with a subexponential number of
pure states and x < 1). At low enough temperature the
thermodynamic transition becomes first order, between
the 1RSB SG and the QP. For this reason, the RS compu-
tation gives a wrong result for the first-order transition line,
see top panel of Fig. 2. In both cases we conclude on the
existence of a first-order quantum phase transition at � ¼
�c and zero temperature, separating the dCP (for c ¼ 3) or
the SG (for c ¼ 4) from the QP. The transition extends in a
line �cðTÞ at low enough temperature, which is almost
independent of T.

Numerical investigations.—A first instructive example
of the relevance of this transition is found by comparing the
cavity results with QMC simulations (Figs. 1 and 2 lower
panel). We first run a QMC simulation starting from the
classical ground state at � ¼ 0 and slowly increasing �.
For c ¼ 3, instances have a finite probability of being SAT,
and otherwise have an energy of order 1=N (see below and
[15]): since SAT instances can be solved in polynomial
time using the Gauss elimination algorithm, we can limit
ourselves to the study of this simple case, and we can then
run the QMC for very large sizes (N ¼ 2049). For c ¼ 4,
the problem is typically UNSAT [15], finding the ground-
state is very hard (actually, NP-hard), and we are limited to
much smaller sizes (N � 120); yet a good extrapolation in
1=N to the thermodynamic limit is possible. In both cases
we find that the QMC data follow closely the cavity result
for the dCP or SG phases, respectively. As expected for a
first-order transition, we find some hysteresis around �c

before the system finally jumps to the QP phase. We then
consider a more interesting QMC run starting from large
� ¼ 2 in the QP phase and slowly decreasing �. For both
c ¼ 3, 4, QMC data follow the cavity ones down to the
transition, but in both cases, the energy remains exten-
sively higher than the ground-state energy for any �<
�c. This is already an important indication of the difficulty

in finding the ground state in the dCP and SG phases, even
in presence of quantum fluctuations.
We have further investigated the consequences of the

transition at �c for the QAA by investigating with exact
diagonalization tools the dependence on � of the low-
energy part of the spectrum of H for small sizes. To
unambiguously define the gap �ð�Þ between the ground
state of H and its first excited state at all values of �, we
concentrated on instances ofHP having a unique satisfying
assignment (USA), i.e., a single classical ground state. For
c ¼ 3 and N ! 1, the fraction of SAT and USA instances
are fSAT ¼ 0:609� 0:003 and fUSA ¼ 0:2850� 0:0022,
as determined by using a Davis-Putnam-Logemann-
Loveland–like algorithm to count the number of solutions
of 40 000 instances [17]. Since USA instances are a finite
fraction of the uniform ensemble, they can be easily con-
structed. The spectrum of a typical USA instance of N ¼
15 spins is reported in Fig. 3. We observe, as expected, that
the gap �ð�Þ has a minimum �min close to the phase
transition at �c (recall that �c � 1 for c ¼ 3 at N ! 1).
Around the same �c, mx changes abruptly; hence, its de-
rivative has a large maximum ½dmx=d��max. In Fig. 4 we
show the behavior of the average �min and ½dmx=d��max as
a function of N. Our data are clearly consistent with an
exponential scaling of the gap, which is expected in pres-
ence of a first-order transition (see [5] for a discussion on
how to compute the prefactor in the exponential in fully-
connected models), and an exponential divergence of
½dmx=d��max. The probability distribution over instances
of �min and ½dmx=d��max has a unique peak close to their
average, and its variance is also reported in Fig. 4 (dashed
bars). This shows that all instances undergo a first-order
transition of the same kind in the thermodynamic limit.
Let us finally suggest that the main differences between

our observations and the ones of [6,9] arises from the
method of construction of instances. Most random optimi-
zation problems that undergo a SAT-UNSAT transition as a
control parameter is continuously tuned still have an ex-
ponential number of ground states right before they be-
come UNSAT. Conditioning on USA instances is thus,
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FIG. 3 (color online). Lowest energy levels from exact diago-
nalization of a USA instance with c ¼ 3 and N ¼ 15. In the inset
the region close to the phase transition is magnified.
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contrary to the case studied in this Letter, an exponentially
rare event which restricts the study to extremely atypical
instances and that also forbids the construction of large
instances. There exists however a natural family of difficult
optimization models [e.g., Eq. (1) with c ¼ 4 and Ja ¼
18a] which have unique ground states with probability 1
in the thermodynamic limit [18]. This is thus a practical
way of generating large USA instances as typical ones in a
uniform random ensemble.

Conclusions.—We have obtained the full phase diagram
of the quantum regular XORSAT optimization problem as
a function of T and �. Our main results are: (i) There is a
first-order quantum phase transition at T ¼ 0 between a
paramagnetic or a spin-glass phase and a quantum para-
magnetic phase, at a critical value of � ¼ �c; (ii) The
transition is due to a crossing between the low-�
classical-like ground state, and the high-� quantum para-
magnetic state. It is of very different nature from the level
crossing at infinitesimal � between different spin-glass
ground states discussed in [6]; (iii) the first-order transition
is observed for almost all instances, even for very small N;
(iv) the transition is associated to an exponentially vanish-
ing gap of H; hence, the quantum adiabatic algorithm
requires a run time scaling exponentially with system
size. These results indicate that quantum adiabatic compu-
tations, at least in their original formulation [1,2], fail for
difficult optimization problems.

The method introduced here is not restricted to XORSAT,
and can be applied to investigate other random optimiza-
tion problems, such as, e.g., the exact cover discussed in
[6,7,9] or random K SAT. The study of these problems
should be very interesting, since in the classical case they
typically have exponentially many solutions even at the
SAT-UNSAT transition. This huge degeneracy will be

partially lifted by adding a transverse field, but we expect
the low-energy spectrum of these problems to be quite
complicated. What is the precise definition of the relevant
gap for the QAA in these cases is clearly an interesting
problem. It is, however, rather natural, based on the accu-
mulated knowledge on classical optimization problems [8]
and mean-field spin glasses [5,10], to believe this first-
order transition, and thus the failure of the QAA to be a
generic feature in these problems. The extension of these
results to real-world (more structured) instances remains
an important direction for future research.
We wish to thank B. Altshuler, J. Roland, and A. P.

Young for illuminating discussions.
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