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The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of

fully factorized ground states below a threshold value of the frustration. Ground-state separability thus

provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate

for classical-like solutions. The exact form of the factorized ground states and the critical frustration are

determined for various classes of nonexactly solvable spin models with different spatial ranges of the

interactions. For weak frustration, the existence of disentangling transitions determines the range of

applicability of mean-field descriptions in biological and physical problems such as stochastic gene

expression and the stability of long-period modulated structures.
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Introduction.—Interest in frustrated quantum systems is
due to the fact that they exhibit a large ground-state degen-
eracy, or quasidegeneracy, associated with complex struc-
tures of the quantum phase diagrams [1]. Moreover,
frustrated spin models arise naturally in a variety of physi-
cal situations, e.g., in the study of high-Tc superconductiv-
ity [2,3], long-period modulated structures of condensed
matter [4], and biological systems with stochastic compo-
nents [5]. Unfortunately, rigorous results are available
so far only for ultrasimplified models [1], while numerical
simulations are challenging, as quantum Monte Carlo
methods are not practical for frustrated spin and fermion
models [6], and the density matrix renormalization group
is difficult to apply to systems with dimensionality larger
than 1 and/or periodic boundary conditions [7].
Furthermore, criteria to quantify frustration and the classi-
fication of ‘‘weakly’’ and ‘‘strongly’’ frustrated systems
have been mainly phenomenological, with little or no
rigorous physical and mathematical insight [8].

Recently, a method based on quantum information tech-
niques [9] has allowed us to establish rigorously that large
classes of (generally nonexactly solvable) frustration-free
quantum spin models admit totally disentangled ground
states (GS) at finite values of the interaction strengths and
of the external fields [10]. These factorized GS coincide
exactly with the mean-field solutions and identify well-
defined magnetic orders endowed with simple spatial pe-
riodicities. In this Letter we build on that formalism to
investigate the physics of quantum frustrated systems by
showing that GS separability is a measure of quantum
frustration that discriminates quantitatively regimes of
weak and strong frustration. Indeed, we prove the existence
of a critical frustration threshold below which fully factor-
ized GS are allowed and correspond to definite magnetic
orders with simple periodicity for quantum spin models
belonging to different universality classes and with differ-
ent types and ranges of interactions. We then prove rigor-

ously the existence of disentangling transitions in the GS in
the regime of weak frustration and identify the different
magnetic orders and their quantum phase boundaries. That,
indeed, entanglement and separability can be used to qual-
ify and quantify frustration (and vice versa) can be intui-
tively understood by observing that the presence of
frustration tends to enhance correlations among the con-
stituents and thus to depress the possibility for the occur-
rence of separable (uncorrelated) states. We also discuss
some predictive consequences of these results on the study
of complex systems in physics and biology. Although in
what follows, for ease of presentation, the analysis is
carried out in detail for one-dimensional systems, it is
straightforward to extend it and apply it in general to
systems of arbitrary dimensionality.
We consider spin- 1

2 systems for which frustration arises

from the simultaneous presence of competing antiferro-
magnetic exchange interactions of different spatial range.
The anisotropy J� � 0 (� ¼ x, y, z) in the spin-spin
coupling at sites i and j of the lattice with distance r ¼
ji� jj is taken independent of r, and all couplings are
rescaled by a common, distance-dependent factor fr > 0.
The general model Hamiltonian then reads

H ¼ X
i;r�rmax

frðJxSxi Sxiþr þ JyS
y
i S

y
iþr þ JzS

z
i S

z
iþrÞ � h

X
i

Szi ;

(1)

where S�i are the spin- 12 operators at site i; h is the external

magnetic field; and rmax > 1 is the interaction range, i.e.,
the maximum distance between two spins with nonvanish-
ing coupling. Without loss of generality we assume Jx �
Jy. This general XYZ Hamiltonian with interactions of

arbitrary range includes as subcases many different models
spanning several classes of universality, such as the short-
and long-range Ising, Heisenberg, XY, XX, and XXZmod-
els. We first recall briefly the basic findings on GS facto-
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rization in frustration-free spin models [10]. The quantity
controlling GS factorization is the entanglement excitation
energy (EXE) �E [9]. At every site k it is defined as �E ¼
minfUkghGjUkHUkjGi � hGjHjGi. Here jGi is the GS of

the system andUk is any local rotation acting on the spin at
site k, i.e., a single-spin unitary operation [9]: Uk �N

i�k1i � 2Ok, where 1i is the identity operator on all
the spins but the one at site k, and Ok is a generic
Hermitian, unitary, and traceless operator [9]. For any
translationally invariant and frustration-free Hamil-
tonian H such that ½H;Uk� � 0 8Uk, the vanishing of
the EXE is a necessary and sufficient condition for GS
factorization [9]. In fact, the minimization defining the
EXE identifies an extremal operation �Uk at each site of
the lattice and, therefore, a global operator �U � N

k
�Uk that

admits as its own eigenstate the fully factorized state jGFi:
jGFi ¼

Y
k

½cosð�k=2Þj"ki þ ei’k sinð�k=2Þj#ki�; (2)

where �k and ’k define the direction of �Uk in spin space.
jGFi is the exact GS if and only if the EXE vanishes.
Proceeding to investigate frustrated spin models by this
method, we consider first the simplest short-range inter-
actions, i.e., antiferromagnetic interactions that extend up
to nearest-neighbor (NN) and next-nearest-neighbor
(NNN) spins (rmax ¼ 2).

Short-range models of frustrated antiferromagnets.—
For rmax ¼ 2, with ordering f1 > f2 > 0, in the Hamil-
tonian Eq. (1) we can set, without loss of generality, f1 ¼
1, so that the parameter f ¼ f2=f1 2 ½0; 1� quantifies the
degree of frustration: for f ¼ 0 the system is
frustration free, while for f ¼ 1 the model is fully frus-
trated. To verify the existence of a factorized GS we
impose minimization of the energy and the vanishing of
the EXE to determine the explicit expressions of �k and’k.
One finds that as long as f < 1

2 a factorized GS exists and is

associated to the single-step antiferromagnetic (SA) order
along the x axis. This behavior is mirrored in the fact that
’k ¼ k�,8 k. Vice versa, as soon as f � 1

2 , the candidate

factorized GS is associated to a dimerized antiferromag-
netic order (DA), corresponding to alternating local
phases: ’2k ¼ k�, ’2kþ1 ¼ ’2k (see Fig. 1). The angle
�k is site independent: �k � � 8 k, and is the solution of

cos� ¼ 2hF
J z � J x

; (3)

where hF stands for the factorizing field, i.e., the value (at
this stage, yet to be determined) of the external field at
which the GS becomes fully separable. The quantities J �

are the net interactions that express the coupling of the
entire system to a given spin, due to the presence of the
external field. The net interaction along the z axis is
independent of the magnetic order: J z ¼ 2Jzð1þ fÞ,
while for the ones along x and y one has J x;y ¼ �2ð1�
fÞJx;y in the presence of SA order (f < 1

2 ), and J x;y ¼
�2fJx;y in the case of DA order (f � 1

2 ). To prove that the

state in Eq. (2) is an eigenstate of the Hamiltonian we
decompose the latter at h ¼ hF into a sum of terms involv-
ing only pairs of NN and NNN: Hk;kþr ¼ frðJxSxkSxkþr þ
JyS

y
kS

y
kþr þ JzS

z
kS

z
kþrÞ � hrfðSzk þ SzkþrÞ, where, consis-

tently with Eq. (3), hrf ¼ fr cos�½Jz � cosð’kÞ�
cosð’kþrÞJx�=2. Thus the condition for jGFi to be an
eigenstate of every pair interaction term is

� Jy þ cos2�Jx þ cos’k cos’kþrsin
2�Jz ¼ 0: (4)

Because Eq. (4) must be satisfied both for the cases in
which ’k ¼ ’kþr and when ’k � ’kþr, it must be either
sin� ¼ 0 or Jz ¼ 0. The first case ( sin� ¼ 0) is trivial, as it
implies saturation rather than proper factorization. The
second possibility (Jz ¼ 0) is associated with proper non-
trivial factorization, characterized by � � 0. Using Eqs. (3)
and (4) one determines exactly the factorizing field:

hF ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J xJ y

q
¼

� ð1� fÞ ffiffiffiffiffiffiffiffiffi
JxJy

p
f < 1

2 ;

f
ffiffiffiffiffiffiffiffiffi
JxJy

p
f � 1

2 :
(5)

A sufficient condition for jGFi to be the GS is that its
projection over every pair of spins be the GS of the
corresponding pair Hamiltonian [10,11]. This condition
is never satisfied in the presence of frustration, whose
effects cannot be captured by quantities involving only
pairs of spins. The method must be generalized to include
minimal finite subsets of spins encompassing frustration.
In the case of rmax ¼ 2, the minimal subset is any block of
three contiguous spins, tagged k� 1, k, and kþ 1. The
corresponding triplet Hamiltonian term Hk ¼ 1

2Hk�1;k þ
1
2Hk;kþ1 þHk�1;kþ1 includes all the different types of irre-

ducible interactions appearing in the model. Exactly at h ¼
hF we have that H ¼ P

kHk. Moreover, the projection of
jGFi over the Hilbert space of the three spins k� 1, k, and
kþ 1 is an eigenstate of Hk. Therefore, if one can show
that the projection of jGFi is the GS of every three-body
term Hk, factorization of the total GS is proven. The

FIG. 1 (color online). Analytical lower bound fc (solid blue
line) and exact numerical value of the frustration compatibility
threshold ft (dashed black line) as functions of the ratio Jy=Jx.

GS factorization occurs if and only if f < ft. For f below the
horizontal dotted line f ¼ 1

2 the magnetic order is single-step

antiferromagnetic (SA), while for f above it, it is dimerized
antiferromagnetic (DA). Therefore, no factorized GS supports
DA order, except at Jy ¼ 0.
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analysis yields that (i) if Jy ¼ 0, the factorized state

Eq. (2) is the GS of the systems at h ¼ hF for all values
of the frustration f 2 ½0; 1�, and (ii) if Jy � 0, the GS is

factorized when f lies below a critical value fc:

fc ¼ 1

2

Jx � ffiffiffiffiffiffiffiffiffi
JxJy

p þ Jy
Jx þ Jy

: (6)

To assess whether for f > fc there may be still a region
compatible with GS factorization we consider a partition of
the Hamiltonian into blocks of more than three spins. We

define the sequence of operators ( ~HðnÞ
k ¼ P

n
�¼�n Hkþ�)

which, for any integer n, admit the (2nþ 1)-spin projec-
tion of jGFi as their eigenstate, and whose lowest eigen-
value, in the limit of large n, coincides with the GS energy
of the total Hamiltonian H. For every n, the eigenvalue of
~HðnÞ associated to the factorized eigenstate is "ðnÞ ¼
ð2n� 1ÞEF, where EF is the energy density per site at h ¼
hF. Denoting by�ðnÞ the minimum eigenvalue of ~HðnÞ, we
have that only if there exists an integer �n such that �ðnÞ �
�ðnÞ � "ðnÞ vanishes for any n > �n, then the factorized

state is associated to the lowest eigenvalues of ~HðnÞ, and
hence it is the GS of the total Hamiltonian H. By studying
�ðnÞ as a function of n one can determine exactly, albeit
numerically, the actual boundaries separating the occur-
rence and the absence of GS factorization, as reported in
Fig. 1. The exact threshold value ft lies just slightly above
the analytical lower bound fc, Eq. (6).

Summarizing, we have shown that for f < ft, short-
range frustrated models admit an exact, separable GS of
the form Eq. (2) when the external magnetic field h takes
the value hF defined by Eq. (5). The associated magnetic
order is SA, while every factorized state associated to a DA
order is always an excited energy eigenstate; it becomes a
GS only exactly at Jy ¼ 0. Because the existence of fac-

torized energy eigenstates is always associated to a viola-
tion of the parity symmetry of the magnetization along the
direction of the external field [10,11] the proof of the
existence of factorized GSs, even if it yields no direct
information on the location of the quantum critical points
hc, warrants the existence of quantum phase transitions to
an ordered phase, in frustrated models, as the external field
h decreases and crosses hc (in the case that we have
illustrated, it is a transition to a SA order along x).
Moreover, since the factorizing field hF necessarily lies
in the ordered region, one can, at least, conclude that the
factorizing field anticipates the critical one from below:
hF � hc, a behavior already evidenced in some frustration-
free models [12]. Exactly at f ¼ ft the system undergoes a
level crossing, and hence a first order phase transition from
the twofold degenerate factorized GS Eq. (2) to a twofold
degenerate entangled GS state with complex long range
order (spin liquid phase) incompatible with factorization
points. This phenomenon identifies a frustration-driven
entangling-disentangling transition of the GS at h ¼ hF

as f crosses the critical threshold ft dividing the regimes of
weak and strong frustration.
A phenomenological measure of frustration in antiferro-

magnetic models is provided by TCW=TN , i.e., the ratio of
the Curie-Weiss temperature to the Néel temperature of
bulk three-dimensional ordering [13]. This definition can-
not be applied to systems with vanishing TN (like, e.g., 1D
and 2Dmodels) and it cannot distinguish between different
contributions, classical and quantum, to frustration.
Notwithstanding these limitations, our ground-state analy-
sis suggests that this phenomenological measure does cap-
ture some aspects of frustration, as follows. The existence
of a factorized GS implies the existence of a transition to an
ordered phase, as we argued above. In a bulk 3D system
this should correspond to a finite value of the ratio
TCW=TN , since the order would necessarily freeze at a
finite value of TN > 0. On the other hand, in strongly
frustrated models, strong correlations between quantum
fluctuations persist in the presence of an applied field
favoring GS factorization, and the existence of ordered
phases tends to be suppressed. In the corresponding bulk
3D systems one should then find a higher, asymptotically
diverging value of the ratio TCW=TN , as the temperature at
which the order freezes approaches the absolute zero.
Models with interactions of arbitrary finite range.—For

models Eq. (1) with finite rmax > 2 the triplet Hamiltonians
Hk are generalized to subsets of rmax þ 1 spins, with con-
straint

P
kHk ¼ H at h ¼ hF. The space of the Hamil-

tonian parameters is still divided in a region of low frus-
tration compatible with GS factorization, and one of high
frustration for which GS factorization is forbidden, as
shown in Fig. 2 for models with maximum range of inter-
action rmax ¼ 4 that include, for instance, the J1 � J2 �
J3 � J4 and J1 � J2 � J3 models. Two general trends are
observed: for Jy � 0, the factorized GS has SA order along

the x axis and, as shown in Fig. 1 and 2, the region of low
frustration allowing GS factorization decreases as the an-
isotropy Jy=Jx increases.

Models with interactions of infinite range.—If in Eq. (1)
we let fr ! 0 when the maximum interaction range
rmax ! 1, the question of the existence of factorized
energy eigenstates can be analyzed by neglecting all the

FIG. 2 (color online). Threshold value of the frustration, ft,
below which GS factorization occurs, for frustrated antiferro-
magnets with rmax ¼ 4, as a function of Jy=Jx. Solid black line:

f2 ¼ f; f3 ¼ f2; f4 ¼ f3. Dashed red line: f2 ¼ f; f3 ¼ f=2;
f4 ¼ f=3. Dotted blue line: f2 ¼ f; f3 ¼ f=2; f4 ¼ f=4.
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interactions between spins at distances greater then
some cutoff value r0, solve the associated constraints,
and then let r0 ! 1. To this aim, for each r0 we consider

the operator Hðr0Þ
k ¼ 1

2

P
r0
�¼�r0

P
r0
�0¼�r0 ð1� ����0 Þ �

1
2r0þ1�j���0jH�;�0 that expresses the sum of all the pair

interaction terms between the r0 spins closest to k, and

the associated quantity �ðr0Þ ¼ �ðr0Þ þ 1
4 ðJx þ JyÞ�P

r0
k¼1ð�1Þkfk, where �ðr0Þ is the lowest eigenvalue of

Hðr0Þ
k . We have then analyzed different decay laws for fr,

i.e., fast, fr ¼ 1=r2, intermediate, fr ¼ 1=r, and slow,
fr ¼ 1=

ffiffiffi
r

p
. In the first case it is always �ðr0Þ ¼ 0 and

consequently the system admits a factorized GS exactly

at hF ¼ ð�2=12Þ ffiffiffiffiffiffiffiffiffi
JxJy

p
. In the second case (fr ¼ 1=r),

according to the numerical evidence, �ðr0Þ vanishes in
the limit of arbitrarily large r0 and GS factorization appears

to occur at hF ¼ lnð2Þ ffiffiffiffiffiffiffiffiffi
JxJy

p
. Finally, in the case of slow

decay (fr ¼ 1=
ffiffiffi
r

p
), one has that �ðr0Þ � 0 8 r0 and there-

fore no factorized GS can exist. Therefore, fully connected
models characterized by a rapidly decaying fr, and hence
by low frustration, allow for GS factorization and the
associated SA or DA orders. Vice versa, models with
slowly decaying fr, corresponding to strong frustration,
do not admit factorized GS and simple mean-field and
classical-like descriptions.

Frustrated quantum models of complex condensed mat-
ter and biological systems.—The ANNNI (axial next-
nearest-neighbor Ising) model, a particular case of the
general class of models that we consider in the present
work, provides a possible effective description of systems
with long-period modulated structures, such as, e.g., poly-
typism, antiphase boundaries in binary alloys, and helical
phases in rare earths compounds [4]. It is thought that
quantum frustration effects may be the mechanism respon-
sible for the observed stability of these structures, and for
this reason the quantum version of the ANNNI model is
being intensively studied [4]. It is then important to estab-
lish whether stable modulated structures are indeed pre-
dicted at all by the quantum ANNNI model and in what
physical regimes. When applied to the quantum ANNNI
model (Jy ¼ Jz ¼ 0), our analysis proves that the mean-

field description is applicable for all values of the frustra-
tion and that the value f ¼ 1

2 discriminates between two

types of stable structures, a simple unmodulated ferromag-
netic order associated to a fully factorized GS for f < 1

2 and

an antiphase modulated GS with DA order for f > 1
2 .

Models of frustrated quantum spin networks have also
been advocated as effective descriptions of gene expres-
sion and complex genomic patterns [5]. Here, again, the
problem arises of the range of applicability of simple
mean-field descriptions corresponding to simple magnetic
orders. Indeed, much as for neural networks, the landscape
of stable attractors in gene networks depends, classically,
on the degree of frustration. Assuming a description based
on frustrated classical models with long-range interactions
leads to the qualitative prediction of a small number of

stable attractors in the presence of a ‘‘sufficiently’’ weak
frustration. The question is then whether this prediction is
stable against the effects of quantum fluctuations. Our
analysis shows that the mean-field picture is qualitatively
correct and makes it quantitative by determining the
boundary between the weak and the strong frustration
regime, in which the mean-field predictions fail. For mod-
els with long-range interactions, as we have shown above
(see Fig. 2), the region of low frustration consistent with a
mean-field description is determined by the anisotropy
ratio Jy=Jx and decreases as the latter is increased.

Conclusions and outlook.—We have introduced a rigor-
ous criterion for discriminating between weakly and
strongly frustrated quantum systems in terms of GS factor-
izability. We have determined the threshold that separates
the regions of weak and strong frustration, and we have
singled out the exact forms of the factorized GS, the
associated quantum phases, and the corresponding mag-
netic orders in the region of low frustration. These criteria
should be experimentally testable in two- and three-body
correlation experiments.
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